Ferroelectric phase transitions in Pb2xSn2(1-x)P2Se6 system

Heat capacities of the Pb2xSn2(1-x)P2Se6 crystals (x=0, 0.098, 0.251, 0.402 and 1.0) were measured using an adiabatic calorimeter at temperatures between 10 and 350 K. In the crystal of x=0, two heat capacity anomalies corresponding to the ferroelectric commensurate - intermediate incommensurate(C-IC) phase transition temperature Ti, and the incommensurate - paraelectric (IC-N) phase transition temperature Tc, were observed at 193.24±0.10 and 220.07±0.15 K, respectively. The phase transition temperatures decreased with an increase in Pb2+ concentration. The anomaly at Ti disappeared at x=0.251 in the mixed systems of the Pb2xSn2(1-x)P2Se6. In the crystal of Pb2P2Se6 (x=1.0), no phase transition was observed. The normal heat capacities for the mixed crystals were determined by least squares fitting of the Debye and Einstein functions to the experimental data. The anomalous heat capacities gave the phase transition entropies of 8.5 and 1.5 J mol-1 K-1 for x=0. The large transition entropies are consistent with an order-disorder mechanism in the ferroelectric-paraelectric phase transitions in x=0.