The Role of Fuel Preparation in Low-Emission Combustion

The attainment of very low pollutant emissions, in particular oxides of nitrogen (NO{sub x}), from gas turbines is not only of considerable environmental concern but has also become an area of increasing competitiveness between the different engine manufacturers. For stationary engines, the attainment of ultralow NO{sub x} has become the foremost marketing issue. This paper is devoted primarily to current and emerging technologies in the development of ultralow emissions combustors for application to aircraft and stationary engines. Short descriptions of the basic design features of conventional gas turbine combustors and the methods of fuel injection now in widespread use are followed by a review of fuel spray characteristics and recent developments in the measurement and modeling of these characteristics. The main gas-turbine-generated pollutants and their mechanisms of formation are described, along with related environmental risk and various issues concerning emissions regulations and recently enacted legislation for limiting the pollutant levels emitted by both aircraft and stationary engines. The impact so these emissions regulations on combustor and engine design are discussed first in relation to conventional combustors and then in the context of variable-geometry and staged combustors. Both these concepts are founded on emissions reduction by control of flame temperature. Basicmore » approaches to the design of dry low-NO{sub x} and ultralow-NO{sub x} combustors are reviewed.« less

[1]  J. Chin,et al.  Advancd droplet evaporation model for turbine fuels , 1995 .

[2]  N. K. Rizk,et al.  Three-Dimensional Analysis of Gas Turbine Combustors , 1991 .

[3]  W. S. Y. Hung,et al.  Carbon Monoxide Emissions From Gas Turbines as Influenced by Ambient Temperature and Turbine Load , 1993 .

[4]  Arthur H. Lefebvre,et al.  Fuel Distributions from Pressure-Swirl Atomizers , 1985 .

[5]  John B. Mcvey,et al.  High-resolution patternator for the characterization of fuel sprays , 1987 .

[6]  Suresh K. Aggarwal,et al.  A Review of Droplet Dynamics and Vaporization Modeling for Engineering Calculations , 1994 .

[7]  Junichi Kitajima,et al.  Development of a Dry Low NOx Combustor for 1.5 MW Gas Turbines , 1993 .

[8]  C. J. Etheridge,et al.  Mars SoLoNOx: Lean Premix Combustion Technology in Production , 1994 .

[9]  D. J. White,et al.  Low NOx Combustion Systems for Burning Heavy Residual Fuels and High-Fuel-Bound Nitrogen Fuels , 1982 .

[10]  P. Rosin The Laws Governing the Fineness of Powdered Coal , 1933 .

[11]  P J Santangelo,et al.  Focused-image holography as a dense-spray diagnostic. , 1994, Applied optics.

[12]  G. J. Sturgess,et al.  Modification of Combustor Stoichiometry Distribution for Reduced NOx Emission From Aircraft Engines , 1993 .

[13]  A. Wynne,et al.  Visualization of airblast atomized spray structure under varying air pressure conditions , 1991 .

[14]  C. P. Fenimore,et al.  Formation of nitric oxide in premixed hydrocarbon flames , 1971 .

[15]  Nicolas Vortmeyer,et al.  A Catalytic Combustor for High-Temperature Gas Turbines , 1994 .

[16]  S. J. Anderson,et al.  Development of a Small-Scale Catalytic Gas Turbine Combustor , 1982 .

[17]  T. Becker,et al.  The Capability of Different Semianalytical Equations for Estimation of NOx Emissions of Gas Turbines , 1994 .

[18]  Luke H. Cowell,et al.  Development of a Catalytic Combustor for Industrial Gas Turbines , 1994 .

[19]  Fred C. Bahlmann,et al.  Development of a Lean-Premixed Two-Stage Annular Combustor for Gas Turbine Engines , 1994 .

[20]  Mikio Sato,et al.  Design and Test of a Low-NOx Advanced Rich-Lean Combustor for LBG Fueled 1300°C-Class Gas Turbine , 1992 .

[21]  D. W. Bahr HC and CO Emission Abatement via Selective Fuel Injection , 1982 .

[22]  J Chin An engineering calculation method for turbine fuel droplet evaporation at critical conditions with finite liquid diffusivity , 1995 .

[23]  Arthur H. Lefebvre,et al.  Fuel Effects on Aircraft Combustor Emissions , 1986 .

[24]  James Rollins Maughan,et al.  A Dry Low NOx Combustor for the MS3002 Regenerative Gas Turbine , 1994 .

[25]  John B. Heywood,et al.  The effects of imperfect fuel-air mixing in a burner onno formation from nitrogen in the air and the fuel , 1973 .

[26]  Thomas F. Fric Effects of fuel-air unmixedness on NO(x) emissions , 1992 .

[27]  W. MacNee,et al.  Particulate air pollution and acute health effects , 1995, The Lancet.

[28]  G. Wang,et al.  Particle Diagnostics and Turbulence Measurements in a Confined Isothermal Liquid Spray , 1993 .

[29]  F. J. Martin,et al.  NOx from fuel nitrogen in two-stage combustion , 1977 .

[30]  David A. Owen,et al.  Industrial RB211 Dry Low Emission Combustion , 1993 .

[31]  Robert J. Shaw Engine technology challenges for a 21st Century High-Speed Civil Transport , 1993 .

[32]  H. Mongia,et al.  Three-dimensional emission modeling for diffusion flame, rich/lean, and lean gas turbine combustors , 1993 .

[33]  H. K. Mak,et al.  Development of a Natural Gas-Fired, Ultra-Low NOx Can Combustor for an 800 KW Gas Turbine , 1991 .

[34]  Vincent McDonell,et al.  Influence of Hardware Design on the Flow Field Structures and the Patterns of Droplet Dispersion: Part I—Mean Quantities , 1995 .

[35]  K. Bauckhage,et al.  The Phase‐Doppler‐Difference‐Method, a New Laser‐Doppler Technique for Simultaneous Size and Velocity Measurements. Part 1: Description of the method , 1988 .

[36]  J. S. Chin,et al.  Temperature Effects on Fuel Thermal Stability , 1991 .

[37]  J. S. Chin,et al.  Influence of Flow Conditions on Deposits From Heated Hydrocarbon Fuels , 1993 .

[38]  R. M. Washam,et al.  Development of a Dry Low NOx Combustor , 1989 .

[39]  N. K. Rizk,et al.  Three-Dimensional Gas Turbine Combustor Emissions Modeling , 1993 .

[40]  M. Aigner,et al.  Second-Generation Low-Emission Combustors for ABB Gas Turbines: Field Measurements With GT11N-EV , 1993 .

[41]  Ming Chia Lai,et al.  CFD Analysis of Jet Mixing in Low NOx Flametube Combustors , 1991 .

[42]  A. H. Lefebvre,et al.  Fuel effects on gas turbine combustion-liner temperature, pattern factor, and pollutant emissions , 1984 .

[43]  J. S. Chin An Engineering Calculation Method for Multi-Component Stagnant Droplet Evaporation With Finite Diffusivity , 1994 .

[44]  H. Mongia,et al.  Gas turbine combustor performance evaluation , 1991 .

[45]  David T. Pratt,et al.  NOx Sensitivities for Gas Turbine Engines Operated on Lean-Premixed Combustion and Conventional Diffusion Flames , 1992 .

[46]  K. Aoyama,et al.  Development of a Dry Low NOx Combustor for a 120-MW Gas Turbine , 1984 .

[47]  H. G. Semerjian,et al.  Pollutant emissions from “partially” mixed turbulent flames , 1979 .

[48]  Arthur H. Lefebvre,et al.  Factors influencing the effective spray cone angle of pressure-swirl atomizers , 1992 .

[49]  E. M. Goodger,et al.  Spontaneous ignition research: review of experimental data , 1987 .

[50]  David Anderson,et al.  Effects of equivalence ratio and dwell time on exhaust emissions from an experimental premixing prevaporizing burner , 1975 .

[51]  Timothy S. Snyder,et al.  Comparison of Liquid Fuel/Air Mixing and NOx Emissions for a Tangential Entry Nozzle , 1994 .

[52]  Gerald J. Micklow,et al.  Emissions Reduction by Varying the Swirler Airflow Split in Advanced Gas Turbine Combustors , 1993 .

[53]  D. W. Bahr Aircraft Turbine Engine NOx Emission Limits: Status and Trends , 1992 .

[54]  Yoshihiro Nomura,et al.  Evaporation Characteristics of Spray in a Lean Premixed-Prevaporization Combustor for a 100 KW Automotive Ceramic Gas Turbine , 1994 .

[55]  G. S. Samuelsen,et al.  The two-phase flow downstream of a production engine combustor swirl cup , 1992 .

[56]  P. E. Sabla,et al.  Development of a Fuel Air Premixer for Aero-Derivative Dry Low Emissions Combustors , 1994 .

[57]  H. Mongia,et al.  Three-dimensional NOx modeling for rich/lean combustor , 1993 .

[58]  Norman Chigier,et al.  Drop size and velocity instrumentation , 1983 .

[59]  W. J. Dodds,et al.  Innovative High-Temperature Aircraft Engine Fuel Nozzle Design , 1993 .

[60]  Norman Chigier,et al.  Guest Editorial Particle Sizing And Spray Analysis , 1984 .

[61]  N. K. Rizk,et al.  Semianalytical Correlations for NOx, CO, and UHC Emissions , 1993 .

[62]  Kenneth O. Smith,et al.  Design and Testing of an Ultra-Low NOx Gas Turbine Combustor , 1986 .

[63]  R. R. Tacina Autoignition in a premixing-prevaporizing fuel duct using 3 different fuel injection systems at inlet air temperatures to 1250 K , 1983 .

[64]  Hukam Chand Mongia,et al.  Low NOx Rich-Lean Combustion Concept Application , 1991 .

[65]  A. Mellor,et al.  Semi-empirical correlations for gas turbine emissions, ignition, and flame stabilization , 1980 .

[66]  N. K. Rizk,et al.  Influence of design concept and liquid properties on fuel injector performance , 1988 .

[67]  M. B. Hilt,et al.  Evolution of NOx Abatement Techniques Through Combustor Design for Heavy-Duty Gas Turbines , 1984 .

[68]  Thomas Sattelmayer,et al.  Second-generation low-emission combustors for ABB gas turbines : burner development and tests at atmospheric pressure , 1992 .

[69]  Gary Leonard,et al.  Development of an Aeroderivative Gas Turbine Dry Low Emissions Combustion System , 1993 .

[70]  Sanjay M. Correa,et al.  Computational models and methods for continuous gaseous turbulent combustion , 1987 .

[71]  A. Melling,et al.  Principles and practice of laser-Doppler anemometry , 1976 .

[72]  D. W. Bahr,et al.  Technology for the design of high temperature rise combustors , 1985 .

[73]  R. W. Tate EQUIPMENT AND DESIGN—Spray Patternation , 1960 .

[74]  Masafumi Sasaki,et al.  Low NOx Combustor for Automotive Ceramic Gas Turbine: Conceptual Design , 1991 .

[75]  P. V. Heberling “Prompt no” measurements at high pressures , 1977 .

[76]  Arthur H. Lefebvre,et al.  Factors Influencing the Circumferential Liquid Distribution From Pressure-Swirl Atomizers , 1993 .

[77]  W. S. Y. Hung,et al.  The Control of NOx and CO Emissions From 7-MW Gas Turbines With Water Injection as Influenced by Ambient Conditions , 1985 .

[78]  A. Levy,et al.  Nitrogen oxide formation in flames: The roles of NO2 and fuel nitrogen , 1975 .

[79]  N. K. Rizk,et al.  Gas turbine combustor design methodology , 1986 .

[80]  A. S. Novick,et al.  Design and Preliminary Results of a Fuel Flexible Industrial Gas Turbine Combustor , 1982 .

[81]  David K. Yee,et al.  New Catalytic Combustion Technology for Very Low Emissions Gas Turbines , 1994 .

[82]  S. Plee,et al.  Review of flashback reported in prevaporizing/premixing combustors☆ , 1978 .

[83]  L. H. Cowell,et al.  Experimental Evaluation of a Liquid-Fueled, Lean-Premixed Gas Turbine Combustor , 1989 .

[84]  Hukam Chand Mongia,et al.  Modeling of gas turbine fuel nozzles , 1986 .

[85]  Hukam Chand Mongia,et al.  Three-dimensional combustor performance validation with high-densityfuels , 1990 .

[86]  P. B. Roberts,et al.  Development of a Low Nox Lean Premixed Annular Combustor , 1982 .

[87]  A. H. Lefebvre,et al.  Fuel thermal stability effects on spray characteristics , 1987 .

[88]  Vincent McDonell,et al.  Experimental Study of a Model Gas Turbine Combustor Swirl Cup, Part 11: Droplet Dynamics , 1994 .

[89]  Robert C. Steele,et al.  Simplified Models for NOx Production Rates in Lean-Premixed Combustion , 1994 .

[90]  D. Kretschmer,et al.  The Prediction of Thermal NOx in Gas Turbines , 1985 .

[91]  B. L. Koff Aircraft Gas Turbine Emissions Challenge , 1993 .

[92]  Mikio Sato,et al.  Test Results of Low NOx Catalytic Combustors for Gas Turbines , 1994 .

[93]  A H Lefebvre,et al.  Fuel Effects on Gas Turbine Combustion , 1986 .

[94]  Warren J Mick,et al.  Combustion System Performance and Field Test Results of the MS7001F Gas Turbine , 1993 .

[95]  Masafumi Sasaki,et al.  Development of a Low-Emission Combustor for a 100-kW Automotive Ceramic Gas Turbine (II) , 1996 .

[96]  A. H. Lefebvre,et al.  Influence of Fuel Drop Size and Combustor Operating Conditions on Pollutant Emissions , 1986 .

[97]  M. A. Serag-Eldin,et al.  Computations of Three-Dimensional Gas-Turbine Combustion Chamber Flows , 1979 .

[98]  N. K. Rizk,et al.  Calculation approach validation for airblast atomizers , 1992 .

[99]  J. E. Hustad,et al.  Pollutant Emissions From Gas Fired Turbine Engines in Offshore Practice: Measurements and Scaling , 1993 .

[100]  J. Palma,et al.  The Flow Inside a Model Gas Turbine Combustor: Calculations , 1993 .

[101]  C. H. Priddin,et al.  Predictions of the flow field and local gas composition in gas turbine combustors , 1979 .

[102]  John B. Mcvey,et al.  Application of Advanced Diagnostics to Airblast Injector Flows , 1987 .

[103]  G. S. Samuelsen,et al.  Scaling of the Two-Phase Flow Downstream of a Gas Turbine Combustor Swirl Cup: Part I—Mean Quantities , 1993 .

[104]  C. Wilkes,et al.  NOx reduction from a gas turbine combustor using exhaust gas recirculation , 1980 .

[105]  A. H. Lefebvre,et al.  The influences of fuel composition and spray characteristics on nitric oxide formation , 1989 .

[106]  Arthur H. Lefebvre,et al.  Influence of ambient pressure on drop-size and velocity distributions in dense sprays , 1994 .

[107]  Hukam Chand Mongia,et al.  Semi-Analytical Fuel Injector Performance Correlation Approach , 1992 .

[108]  Leonard Angello,et al.  Dry Low NOx Combustion Development for Electric Utility Gas Turbine Applications: A Status Report , 1989 .

[109]  J. P. Armstrong,et al.  Development of an Innovative High-Temperature Gas Turbine Fuel Nozzle , 1992 .

[110]  H. Mongia,et al.  Emissions predictions of different gas turbine combustors , 1994 .

[111]  N. K. Rizk,et al.  Prediction of Velocity Coefficient and Spray Cone Angle for Simplex Swirl Atomizers , 1986 .

[112]  H. C. Mongia,et al.  Fuel nozzle air flow modeling , 1986 .

[113]  D. McKnight Development of a Compact Gas Turbine Combuster to Give Extended Life and Acceptable Exhaust Emissions , 1979 .

[114]  H. Pfost,et al.  Combustion With Low Pollutant Emissions of Liquid Fuels in Gas Turbines by Premixing and Prevaporization , 1994 .

[115]  F Durst,et al.  Two optical methods for simultaneous measurement of particle size, velocity, and refractive index. , 1991, Applied optics.

[116]  Vincent McDonell,et al.  Characterization of the Non-Reacting Two-Phase Flow Downstream of an Aero-Engine Combustor Dome Operating at Realistic Conditions , 1994 .

[117]  J. E. Peters Current gas turbine combustion and fuels research and development , 1987 .