A Better-Than-3n Lower Bound for the Circuit Complexity of an Explicit Function

We consider Boolean circuits over the full binary basis. We prove a (3+1/86)n-o(n) lower bound on the size of such a circuit for an explicitly defined predicate, namely an affine disperser for sublinear dimension. This improves the 3n-o(n) bound of Norbert Blum (1984).The proof is based on the gate elimination technique extended with the following three ideas. We generalize the computational model by allowing circuits to contain cycles, this in turn allows us to perform affine substitutions. We use a carefully chosen circuit complexity measure to track the progress of the gate elimination process. Finally, we use quadratic substitutions that may be viewed as delayed affine substitutions.

[1]  Johan Hå stad The Shrinkage Exponent of de Morgan Formulas is 2 , 1998 .

[2]  Kazuhisa Seto,et al.  A Satisfiability Algorithm and Average-Case Hardness for Formulas over the Full Binary Basis , 2012, Computational Complexity Conference.

[3]  Jun Tarui,et al.  A well-mixed function with circuit complexity 5n: Tightness of the Lachish-Raz-type bounds , 2011, Theor. Comput. Sci..

[4]  Jeffrey D. Ullman,et al.  Formal languages and their relation to automata , 1969, Addison-Wesley series in computer science and information processing.

[5]  Wolfgang J. Paul A 2.5 n-Lower Bound on the Combinational Complexity of Boolean Functions , 1977, SIAM J. Comput..

[6]  Colin Cooper,et al.  Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2016, September 7-9, 2016, Paris, France , 2016, APPROX-RANDOM.

[7]  Fabrizio Grandoni,et al.  A measure & conquer approach for the analysis of exact algorithms , 2009, JACM.

[8]  Victor Shoup,et al.  Lower bounds for polynomial evaluation and interpolation problems , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[9]  Larry J. Stockmeyer On the combinational complexity of certain symmetric Boolean functions , 2005, Mathematical systems theory.

[10]  Claus-Peter Schnorr Zwei lineare untere Schranken für die Komplexität Boolescher Funktionen , 2005, Computing.

[11]  Alexander S. Kulikov,et al.  New Lower Bounds on Circuit Size of Multi-output Functions , 2014, Theory of Computing Systems.

[12]  Avishay Tal,et al.  Two Structural Results for Low Degree Polynomials and Applications , 2014, Electron. Colloquium Comput. Complex..

[13]  Eli Ben-Sasson,et al.  Affine dispersers from subspace polynomials , 2009, STOC '09.

[14]  Norbert Blum A Boolean Function Requiring 3n Network Size , 1984, Theor. Comput. Sci..

[15]  Avishay Tal,et al.  Shrinkage of De Morgan Formulae by Spectral Techniques , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[16]  Sambuddha Roy,et al.  Oblivious Symmetric Alternation , 2006, STACS.

[17]  Johan Håstad,et al.  Almost optimal lower bounds for small depth circuits , 1986, STOC '86.

[18]  Jehoshua Bruck,et al.  Cyclic Boolean circuits , 2012, Discret. Appl. Math..

[19]  Xin Li,et al.  A New Approach to Affine Extractors and Dispersers , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[20]  Claude E. Shannon,et al.  The synthesis of two-terminal switching circuits , 1949, Bell Syst. Tech. J..

[21]  Ran Raz,et al.  Improved Average-Case Lower Bounds for DeMorgan Formula Size , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[22]  V. Rich Personal communication , 1989, Nature.

[23]  Rahul Santhanam,et al.  Fighting Perebor: New and Improved Algorithms for Formula and QBF Satisfiability , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[24]  Andrew Chi-Chih Yao,et al.  Separating the Polynomial-Time Hierarchy by Oracles (Preliminary Version) , 1985, FOCS.

[25]  Xin Li,et al.  Extractors for Affine Sources with Polylogarithmic Entropy , 2015, Electron. Colloquium Comput. Complex..

[26]  Claus-Peter Schnorr The Combinational Complexity of Equivalence , 1976, Theor. Comput. Sci..

[27]  Uri Zwick A 4n Lower Bound on the Combinational Complexity of Certain Symmetric Boolean Functions over the Basis of Unate Dyadic Boolean Functions , 1991, SIAM J. Comput..

[28]  V. M. Khrapchenko Method of determining lower bounds for the complexity of P-schemes , 1971 .

[29]  Kazuo Iwama,et al.  An Explicit Lower Bound of 5n - o(n) for Boolean Circuits , 2002, MFCS.

[30]  David Zuckerman,et al.  Mining Circuit Lower Bound Proofs for Meta-algorithms , 2014, Computational Complexity Conference.

[31]  Ronen Shaltiel,et al.  Dispersers for Affine Sources with Sub-polynomial Entropy , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[32]  Oliver Kullmann,et al.  New Methods for 3-SAT Decision and Worst-case Analysis , 1999, Theor. Comput. Sci..

[33]  Emanuele Viola,et al.  Short PCPs with Projection Queries , 2014, ICALP.

[34]  Amir Yehudayoff,et al.  Affine extractors over prime fields , 2011, Comb..

[35]  Jean Bourgain,et al.  On the Construction of Affine Extractors , 2007 .

[36]  Zeev Dvir Extractors for varieties , 2009, 2009 24th Annual IEEE Conference on Computational Complexity.

[37]  Valentine Kabanets,et al.  Correlation Bounds and #SAT Algorithms for Small Linear-Size Circuits , 2015, COCOON.

[38]  Wolfgang J. Paul A 2.5 n-lower bound on the combinational complexity of Boolean functions , 1975, STOC '75.

[39]  Uri Zwick,et al.  Shrinkage of de Morgan formulae under restriction , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[40]  Alexander S. Kulikov,et al.  An Elementary Proof of a 3n - o(n) Lower Bound on the Circuit Complexity of Affine Dispersers , 2011, MFCS.

[41]  Alexander Golovnev,et al.  Weighted Gate Elimination: Boolean Dispersers for Quadratic Varieties Imply Improved Circuit Lower Bounds , 2016, ITCS.

[42]  Stephen A. Cook,et al.  Complexity Theory of Parallel Time and Hardware , 1989, Inf. Comput..

[43]  Ran Raz,et al.  Explicit lower bound of 4.5n - o(n) for boolena circuits , 2001, STOC '01.

[44]  Alexander S. Kulikov,et al.  A new approach to proving upper bounds for MAX-2-SAT , 2006, SODA '06.

[45]  Ryan Williams Nonuniform ACC Circuit Lower Bounds , 2014, JACM.

[46]  Lorenz Weizsäcker,et al.  Aggregates with Component Size One Characterize Polynomial Space , 2004, Electron. Colloquium Comput. Complex..

[47]  Ryan Williams Improving Exhaustive Search Implies Superpolynomial Lower Bounds , 2013, SIAM J. Comput..

[48]  Guy Kindler,et al.  Simulating independence: new constructions of condensers, ramsey graphs, dispersers, and extractors , 2005, STOC '05.

[49]  Noam Nisan,et al.  The Effect of Random Restrictions on Formula Size , 1993, Random Struct. Algorithms.

[50]  Alexander S. Kulikov,et al.  Circuit Complexity and Multiplicative Complexity of Boolean Functions , 2010, CiE.

[51]  Ronald L. Rivest The Necessity of Feedback in Minimal Monotone Combinational Circuits , 1977, IEEE Transactions on Computers.

[52]  Alexander Golovnev,et al.  Circuit Size Lower Bounds and #SAT Upper Bounds Through a General Framework , 2016, MFCS.

[53]  Lance Fortnow,et al.  Nonrelativizing separations , 1998, Proceedings. Thirteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat. No.98CB36247).