Energy efficient sensor, relay and base station placements for coverage, connectivity and routing

We consider a wireless sensor network made of sensor nodes capable of sensing and communication, relay nodes capable of communication, and base stations responsible for collecting data generated by sensor nodes, to be deployed in sensor field. We address the problem of placing the sensor nodes, relay nodes and base stations in the sensor field such that (i) each point of interest in the sensor field is covered by a subset of sensors of desired cardinality (ii) the resulting sensor network is connected and (iii) the sensor network has sufficient bandwidth. We propose several deployment strategies to determine optimal placements of sensor nodes, relay nodes and base stations for guaranteed coverage, connectivity, bandwidth and robustness. We study several different objectives such as minimizing the number of sensor nodes deployed, minimizing the total cost, minimizing the energy consumption, maximizing the network lifetime and maximizing the network utilization. The placement problems for reliable as well as unreliable/probabilistic detection models are formulated as integer linear programs (ILPs). The practicality, effectiveness and performance of the proposed strategies are illustrated through simulations.

[1]  S. Sitharama Iyengar,et al.  Grid Coverage for Surveillance and Target Location in Distributed Sensor Networks , 2002, IEEE Trans. Computers.

[2]  Richard C. Larson,et al.  Model Building in Mathematical Programming , 1979 .

[3]  Krishnendu Chakrabarty,et al.  Sensor placement for effective coverage and surveillance in distributed sensor networks , 2003, 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003..

[4]  Guoliang Xing,et al.  Integrated coverage and connectivity configuration in wireless sensor networks , 2003, SenSys '03.

[5]  Krishnendu Chakrabarty,et al.  Sensor deployment and target localization based on virtual forces , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[6]  Konstantinos Kalpakis,et al.  Topology-aware placement and role assignment for energy-efficient information gathering in sensor networks , 2003, Proceedings of the Eighth IEEE Symposium on Computers and Communications. ISCC 2003.

[7]  Milind Dawande,et al.  Energy efficient schemes for wireless sensor networks with multiple mobile base stations , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[8]  Jennifer C. Hou,et al.  Maintaining Sensing Coverage and Connectivity in Large Sensor Networks , 2005, Ad Hoc Sens. Wirel. Networks.

[9]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[10]  Y.T. Hou,et al.  On energy provisioning and relay node placement for wireless sensor networks , 2005, IEEE Transactions on Wireless Communications.

[11]  Francesco De Pellegrini,et al.  Robust location detection in emergency sensor networks , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).