Predicting the halogen‐n (n = 3–6) synthons to form the “windmill” pattern bonding based on the halogen‐bonded interactions

The “windmill” pattern cyclic halogen polymers (XBr)3 (X = Cl, Br, I) and (BrY)n (n = 3–6, Y = Cl, Br, I) have been investigated using the density functional theory. Due to the anisotropic distribution of its electron density, the halogen atom can form halogen‐bonded interactions by functioning as both electron donor sites and electron acceptor sites. For (XBr)3 (X = Cl, Br, I) trimers, the Cl···Cl interaction is the weakest, and the I···I interaction is the strongest. For (BrY)n (n = 3–6, Y = Cl, Br, I), the Br···Br halogen bonds are the strongest in (BrY)4 tetramers. We predict that the iodine‐4 synthon may allow creation of a self‐assembled island during crystal growth. The angle formed by the electron‐depleted sigma‐hole, the halogen atom and the electron‐rich equatorial belt perpendicular to the bond direction, together with the halogen‐bond angle, can be used to explain the geometries and strength of the halogen‐bond interactions. © 2018 Wiley Periodicals, Inc.

[1]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[2]  G. Desiraju,et al.  Halogen bonds in crystal engineering: like hydrogen bonds yet different. , 2014, Accounts of chemical research.

[3]  Hiroshi Nakatsuji,et al.  Topology of density difference and force analysis , 1996 .

[4]  Min Wook Lee,et al.  Tetragonal porous networks made by rod-like molecules on Au(1 1 1) with halogen bonds , 2014 .

[5]  Xinyuan Wei,et al.  Imaging the halogen bond in self-assembled halogenbenzenes on silver , 2017, Science.

[6]  Peter Politzer,et al.  Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies , 2010, Journal of molecular modeling.

[7]  R. Stewart On the mapping of electrostatic properties from bragg diffraction data , 1979 .

[8]  Pierangelo Metrangolo,et al.  Halogen bonding in supramolecular chemistry. , 2008, Angewandte Chemie.

[9]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[10]  C. Suresh,et al.  Molecular electrostatics for probing lone pair-π interactions. , 2013, Physical chemistry chemical physics : PCCP.

[11]  S. Papson “Model” , 1981 .

[12]  Timothy Clark,et al.  Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. , 2010, Physical chemistry chemical physics : PCCP.

[13]  Eric Westhof,et al.  Halogen bonds in biological molecules. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Peter Politzer,et al.  A predicted new type of directional noncovalent interaction , 2007 .

[15]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[16]  Lingpeng Meng,et al.  Insight into the lithium/hydrogen bonding in (CH2)2X...LiY/HY (X: C=CH2, O, S; Y=F, Cl, Br) complexes , 2011, Journal of molecular modeling.

[17]  Pierangelo Metrangolo,et al.  Chalcogen bonding in crystal engineering , 2005, Acta Crystallographica Section A Foundations and Advances.

[18]  Kevin E. Riley,et al.  Perspectives on halogen bonding and other σ-hole interactions: Lex parsimoniae (Occam’s Razor) , 2012 .

[19]  P. Beer,et al.  Halogen Bonding in Supramolecular Chemistry. , 2008, Chemical reviews.

[20]  Shridhar R. Gadre,et al.  Electrostatics for probing lone pairs and their interactions , 2018, J. Comput. Chem..

[21]  Monique Roux,et al.  Recherches sur la répartition de la densité électronique dans les molécules: I. — Effet de la liaison chimique , 1956 .

[22]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[23]  Dmitrij Rappoport,et al.  Property-optimized gaussian basis sets for molecular response calculations. , 2010, The Journal of chemical physics.

[24]  M. Jaskólski,et al.  Crystal engineering with hydrogen bonds and halogen bonds , 2005 .

[25]  Timothy Clark,et al.  Halogen bonding: the σ-hole , 2007 .

[26]  P Hobza,et al.  Noncovalent interactions: a challenge for experiment and theory. , 2000, Chemical reviews.

[27]  Pierangelo Metrangolo,et al.  The Halogen Bond , 2016, Chemical reviews.

[28]  Yunxiang Lu,et al.  Triangular halogen trimers. A DFT study of the structure, cooperativity, and vibrational properties. , 2005, The journal of physical chemistry. A.

[29]  P. Politzer,et al.  Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. , 1985, Environmental health perspectives.

[30]  Zhenbo Liu,et al.  Interplay between halogen bond and lithium bond in MCN‐LiCN‐XCCH (M = H, Li, and Na; X = Cl, Br, and I) complex: The enhancement of halogen bond by a lithium bond , 2011, J. Comput. Chem..

[31]  C. Suresh,et al.  A molecular electrostatic potential analysis of hydrogen, halogen, and dihydrogen bonds. , 2014, The journal of physical chemistry. A.

[32]  Peter Politzer,et al.  Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors , 2007, Journal of molecular modeling.

[33]  Peter Politzer,et al.  Chemical Applications of Atomic and Molecular Electrostatic Potentials: "Reactivity, Structure, Scattering, And Energetics Of Organic, Inorganic, And Biological Systems" , 2013 .