Role of CaMKII in RyR leak, EC coupling and action potential duration: a computational model.

During heart failure, the ability of the sarcoplasmic reticulum (SR) to store Ca(2+) is severely impaired resulting in abnormal Ca(2+) cycling and excitation-contraction (EC) coupling. Recently, it has been proposed that "leaky" ryanodine receptors (RyRs) contribute to diminished Ca(2+) levels in the SR. Various groups have experimentally investigated the effects of RyR phosphorylation mediated by Ca(2+)/calmodulin-dependent kinase II (CaMKII) on RyR behavior. Some of these results are difficult to interpret since RyR gating is modulated by many external proteins and ions, including Ca(2+). Here, we present a mathematical model representing CaMKII-RyR interaction in the canine ventricular myocyte. This is an extension of our previous model which characterized CaMKII phosphorylation of L-type Ca(2+) channels (LCCs) in the cardiac dyad. In this model, it is assumed that upon phosphorylation, RyR Ca(2+)-sensitivity is increased. Individual RyR phosphorylation is modeled as a function of dyadic CaMKII activity, which is modulated by local Ca(2+) levels. The model is constrained by experimental measurements of Ca(2+) spark frequency and steady state RyR phosphorylation. It replicates steady state RyR (leak) fluxes in the range measured in experiments without the addition of a separate passive leak pathway. Simulation results suggest that under physiological conditions, CaMKII phosphorylation of LCCs ultimately has a greater effect on RyR flux as compared with RyR phosphorylation. We also show that phosphorylation of LCCs decreases EC coupling gain significantly and increases action potential duration. These results suggest that LCC phosphorylation sites may be a more effective target than RyR sites in modulating diastolic RyR flux.

[1]  D. Terentyev,et al.  Luminal Ca2+ Controls Termination and Refractory Behavior of Ca2+-Induced Ca2+ Release in Cardiac Myocytes , 2002, Circulation research.

[2]  Donald M Bers,et al.  Calmodulin mediates differential sensitivity of CaMKII and calcineurin to local Ca2+ in cardiac myocytes. , 2008, Biophysical journal.

[3]  R. Winslow,et al.  Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies. , 1999, Circulation research.

[4]  W. Lederer,et al.  Relation between the sarcolemmal Ca2+ current and Ca2+ sparks and local control theories for cardiac excitation-contraction coupling. , 1996, Circulation research.

[5]  H. Schulman,et al.  KN-93, an inhibitor of multifunctional Ca++/calmodulin-dependent protein kinase, decreases early afterdepolarizations in rabbit heart. , 1998, The Journal of pharmacology and experimental therapeutics.

[6]  Donald M. Bers,et al.  β-Adrenergic Enhancement of Sarcoplasmic Reticulum Calcium Leak in Cardiac Myocytes Is Mediated by Calcium/Calmodulin-Dependent Protein Kinase , 2007 .

[7]  R. Winslow,et al.  An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release. , 2002, Biophysical journal.

[8]  H. Drexler,et al.  Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. , 1994, Circulation research.

[9]  Dmitry Terentyev,et al.  Intra‐sarcoplasmic reticulum Ca2+ oscillations are driven by dynamic regulation of ryanodine receptor function by luminal Ca2+ in cardiomyocytes , 2009, The Journal of physiology.

[10]  S. Fleischer,et al.  Phosphorylation Modulates the Function of the Calcium Release Channel of Sarcoplasmic Reticulum from Cardiac Muscle (*) , 1995, The Journal of Biological Chemistry.

[11]  S. Huke,et al.  Ryanodine receptor phosphorylation at Serine 2030, 2808 and 2814 in rat cardiomyocytes. , 2008, Biochemical and Biophysical Research Communications - BBRC.

[12]  D. Bers,et al.  Ca2+/Calmodulin–Dependent Protein Kinase Modulates Cardiac Ryanodine Receptor Phosphorylation and Sarcoplasmic Reticulum Ca2+ Leak in Heart Failure , 2005, Circulation research.

[13]  S. Huke,et al.  Temporal dissociation of frequency-dependent acceleration of relaxation and protein phosphorylation by CaMKII. , 2007, Journal of molecular and cellular cardiology.

[14]  Joseph L Greenstein,et al.  The role of stochastic and modal gating of cardiac L-type Ca2+ channels on early after-depolarizations. , 2005, Biophysical journal.

[15]  P. Cohen,et al.  Identification of the major protein phosphatases in mammalian cardiac muscle which dephosphorylate phospholamban. , 1991, European journal of biochemistry.

[16]  Stephan E. Lehnart,et al.  Ca2+/Calmodulin-Dependent Protein Kinase II Phosphorylation Regulates the Cardiac Ryanodine Receptor , 2004, Circulation research.

[17]  W. Lederer,et al.  Modulation of cardiac ryanodine receptors of swine and rabbit by a phosphorylation‐dephosphorylation mechanism. , 1995, The Journal of physiology.

[18]  D M Bers,et al.  Reverse mode of the sarcoplasmic reticulum calcium pump and load-dependent cytosolic calcium decline in voltage-clamped cardiac ventricular myocytes. , 2000, Biophysical journal.

[19]  Yoram Rudy,et al.  Rate Dependence and Regulation of Action Potential and Calcium Transient in a Canine Cardiac Ventricular Cell Model , 2004, Circulation.

[20]  D. Armstrong,et al.  Cyclosporin and Timothy syndrome increase mode 2 gating of CaV1.2 calcium channels through aberrant phosphorylation of S6 helices. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[21]  A. Fabiato,et al.  Time and calcium dependence of activation and inactivation of calcium- induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell , 1985, The Journal of general physiology.

[22]  E. Lakatta,et al.  Ca2+/Calmodulin Kinase II–Dependent Phosphorylation of Ryanodine Receptors Suppresses Ca2+ Sparks and Ca2+ Waves in Cardiac Myocytes , 2007, Circulation research.

[23]  C W Balke,et al.  Local control of excitation‐contraction coupling in rat heart cells. , 1994, The Journal of physiology.

[24]  W. Schmitz,et al.  Activity of cAMP-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human hearts. , 1999, Cardiovascular research.

[25]  W. Lederer,et al.  The Ca2+ leak paradox and “rogue ryanodine receptors”: SR Ca2+ efflux theory and practice , 2006 .

[26]  H. Schulman,et al.  Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity. , 1991, The Journal of biological chemistry.

[27]  E. Olson,et al.  Calcium/Calmodulin-Dependent Protein Kinase II Contributes to Cardiac Arrhythmogenesis in Heart Failure , 2009, Circulation. Heart failure.

[28]  E. Kranias,et al.  Purification and characterization of a calcium-calmodulin-dependent phospholamban kinase from canine myocardium. , 1989, Biochemistry.

[29]  Donald M. Bers,et al.  Termination of Cardiac Ca2+ Sparks: Role of Intra-SR [Ca2+], Release Flux, and Intra-SR Ca2+ Diffusion , 2008, Circulation research.

[30]  D. Burkhoff,et al.  PKA Phosphorylation Dissociates FKBP12.6 from the Calcium Release Channel (Ryanodine Receptor) Defective Regulation in Failing Hearts , 2000, Cell.

[31]  F. Protasi,et al.  Shape, size, and distribution of Ca(2+) release units and couplons in skeletal and cardiac muscles. , 1999, Biophysical journal.

[32]  Stefano Severi,et al.  Simulation of Ca-calmodulin-dependent protein kinase II on rabbit ventricular myocyte ion currents and action potentials. , 2007, Biophysical journal.

[33]  D. Bers,et al.  Elevated Sarcoplasmic Reticulum Ca2+ Leak in Intact Ventricular Myocytes From Rabbits in Heart Failure , 2003, Circulation research.

[34]  Donald M Bers,et al.  A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. , 2004, Biophysical journal.

[35]  D. Bers,et al.  Quantitative Assessment of the SR Ca2+ Leak-Load Relationship , 2002, Circulation research.

[36]  M. Diaz,et al.  Stimulation of Ca-induced Ca release only transiently increases the systolic Ca transient: measurements of Ca fluxes and sarcoplasmic reticulum Ca. , 1998, Cardiovascular research.

[37]  I. Pessah,et al.  Comparison of [3H]ryanodine receptors and Ca++ release from rat cardiac and rabbit skeletal muscle sarcoplasmic reticulum. , 1991, The Journal of pharmacology and experimental therapeutics.

[38]  W. Lederer,et al.  Dynamic modulation of excitation‐contraction coupling by protein phosphatases in rat ventricular myocytes. , 1996, The Journal of physiology.

[39]  R Hetzer,et al.  Identification and expression of delta-isoforms of the multifunctional Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human myocardium. , 1999, Circulation research.

[40]  Zeyun Yu,et al.  Three-dimensional electron microscopy reveals new details of membrane systems for Ca2+ signaling in the heart , 2009, Journal of Cell Science.

[41]  A. Katz,et al.  Mechanism by which Cyclic Adenosine 3′:5′‐Monophosphate‐Dependent Protein Kinase Stimulates Calcium Transport in Cardiac Sarcoplasmic Reticulum , 1979, Circulation research.

[42]  S. Fleischer,et al.  Calcium-induced calcium release from purified cardiac sarcoplasmic reticulum vesicles. General characteristics. , 1984, The Journal of biological chemistry.

[43]  I. Györke,et al.  Regulation of the cardiac ryanodine receptor channel by luminal Ca2+ involves luminal Ca2+ sensing sites. , 1998, Biophysical journal.

[44]  Joseph L Greenstein,et al.  CaMKII-induced shift in modal gating explains L-type Ca(2+) current facilitation: a modeling study. , 2009, Biophysical journal.

[45]  Donald M Bers,et al.  Partial inhibition of sarcoplasmic reticulum ca release evokes long-lasting ca release events in ventricular myocytes: role of luminal ca in termination of ca release. , 2008, Biophysical journal.

[46]  Joseph L Greenstein,et al.  Mechanisms of excitation-contraction coupling in an integrative model of the cardiac ventricular myocyte. , 2006, Biophysical journal.

[47]  Mark E. Anderson,et al.  Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels , 2000, Nature Cell Biology.

[48]  A. Trafford,et al.  Increasing Ryanodine Receptor Open Probability Alone Does Not Produce Arrhythmogenic Calcium Waves: Threshold Sarcoplasmic Reticulum Calcium Content Is Required , 2007, Circulation research.

[49]  Michael Kohlhaas,et al.  Increased Sarcoplasmic Reticulum Calcium Leak but Unaltered Contractility by Acute CaMKII Overexpression in Isolated Rabbit Cardiac Myocytes , 2006, Circulation research.

[50]  D. Bers,et al.  Ca2+/Calmodulin-Dependent Protein Kinase II Phosphorylation of Ryanodine Receptor Does Affect Calcium Sparks in Mouse Ventricular Myocytes , 2006, Circulation research.