One-dimensional automotive catalyst modeling

Abstract Classical one-dimensional (1D) models of automotive catalysts with simplified representation of the fluid flow through the device have proven their effectiveness in designing catalyst systems that have met emission standards to date. This paper reviews the history of 1D catalyst modeling to illustrate the physical phenomena that exist in the catalyst along with the corresponding numerical models. To further advance the state of the art, this paper proposes a promising approach where the bulk gas equations are reformulated based on the governing equations of inviscid flow, while retaining full transient capability. While a compressible formulation of the bulk gas equations will yield the most accurate results, it is rather impractical for kinetics calibration because of its long computational time. It can, however, be used to help calibrate the simpler models by determining the actual residence time within the catalyst. On the other hand, either the incompressible or the constant velocity and density formulations can be used for fast calibration of the kinetics and for full transient cycle studies. In fact, if reactor tests are used to calibrate the kinetics, there is little difference between the compressible and incompressible formulations.

[1]  George G. O'Brien,et al.  A Study of the Numerical Solution of Partial Differential Equations , 1950 .

[2]  Grigorios C. Koltsakis,et al.  CATALYTIC AUTOMOTIVE EXHAUST AFTERTREATMENT , 1997 .

[3]  J. Schmitt Some Examples of Stainless Steel Use in the Automotive Industry , 2002 .

[4]  W. Held,et al.  A Modular Numerical Simulation Tool Predicting Catalytic Converter Light-Off by Improved Modeling of Thermal Management and Conversion Characteristics , 2001 .

[5]  James J. Riley,et al.  Direct numerical simulations of a reacting mixing layer with chemical heat release , 1985 .

[6]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[7]  Edward J. Bissett,et al.  Mathematical model of the thermal regeneration of a wall-flow monolith diesel particulate filter , 1984 .

[8]  Jeffrey Scott Hepburn,et al.  Engine and Aftertreatment Modeling for Gasoline Direct Injection , 1998 .

[9]  Bram van Leer,et al.  In Search Of An Optimal Local Navier-Stokes Preconditioner , 2003 .

[10]  D. Duprez,et al.  Hydrogen formation in propane oxidation on Pt-Rh/CeO2/Al2O3 catalysts , 1992 .

[11]  James C. Cavendish,et al.  Transients of monolithic catalytic converters. Response to step changes in feedstream temperature as related to controlling automobile emissions , 1982 .

[12]  Joseph Mathew,et al.  A high‐resolution scheme for low Mach number flows , 2004 .

[13]  Christopher Depcik Modeling reacting gases and aftertreatment devices for internal combustion engines. , 2003 .

[14]  James C. Cavendish,et al.  Mathematical modeling of catalytic converter lightoff. Part III: Prediction of vehicle exhaust emissions and parametric analysis , 1985 .

[15]  D. Hennecke Heat transfer by Hagen-Poiseuille flow in the thermal development region with axial conduction , 1968 .

[16]  R. Manohar Analysis of laminar-flow heat transfer in the entrance region of circular tubes , 1969 .

[17]  John Li,et al.  NOx release characteristics of lean NOx traps during rich purges , 2003 .

[18]  N. S. Will,et al.  Effect of Flow Distribution on Emissions Performance of Catalytic Converters , 1998 .

[19]  S. E. Voltz,et al.  Kinetic Study of Carbon Monoxide and Propylene Oxidation on Platinum Catalysts , 1973 .

[20]  Daniel Schweich,et al.  Three-way monolithic converter: Simulations versus experiments , 1996 .

[21]  Johney B. Green,et al.  Microwave-Regenerated Diesel Exhaust Particulate Filter , 2001 .

[22]  Julia Windmann,et al.  Impact of the inlet flow distribution on the light-off behavior of a 3-way catalytic converter , 2003 .

[23]  Stuart W. Churchill,et al.  Correlating equations for laminar and turbulent free convection from a horizontal cylinder , 1975 .

[24]  Anastassios M. Stamatelos,et al.  Transient Modeling of 3-Way Catalytic Converters , 1994 .

[25]  Stephen F. Benjamin,et al.  Automotive catalyst warm-up to light-off by pulsating engine exhaust , 2004 .

[26]  Grigorios C. Koltsakis,et al.  Diesel Soot Oxidation with NO 2 : Engine Experiments and Simulations , 2002 .

[27]  John H. Johnson,et al.  Wall-Flow Diesel Particulate Filters—Their Pressure Drop and Collection Efficiency , 1989 .

[28]  U. Grigull,et al.  Thermischer einlauf in ausgebildeter laminarer rohrströmung , 1965 .

[29]  Robert J. Kee,et al.  SURFACE CHEMKIN-III: A Fortran package for analyzing heterogeneous chemical kinetics at a solid-surface - gas-phase interface , 1996 .

[30]  Jeffrey A. Sell,et al.  Dynamic behavior of automotive catalysts. III: Transient enhancement of water-gas shift over rhodium , 1985 .

[31]  C. R. Morgan,et al.  Mathematical Modeling of CO and HC Catalytic Converter Systems , 1971 .

[32]  John L. Harned Analytical Evaluation of a Catalytic Converter System , 1972 .

[33]  Grigorios C. Koltsakis,et al.  Modeling dynamic phenomena in 3-way catalytic converters , 1999 .

[34]  J. Votruba,et al.  Heat and mass transfer in monolithic honeycomb catalysts—I. , 1975 .

[35]  Scott C. Williams,et al.  Modeling current generation catalytic converters: laboratory experiments and kinetic parameter optimization. Steady state kinetics , 1992 .

[36]  The Effect of Ceria Content on the Performance of a NOx Trap , 2003 .

[37]  Zissis Samaras,et al.  Reaction and Diffusion Phenomena in Catalyzed Diesel Particulate Filters , 2004 .

[38]  A. D. Young,et al.  An Introduction to Fluid Mechanics , 1968 .

[39]  N. Amundson,et al.  Stability of adiabatic packed bed reactors. Effect of flow variations and coupling between the particles , 1968 .

[40]  Peter Eastwood,et al.  Critical topics in exhaust gas aftertreatment , 2000 .

[41]  Anastassios M. Stamatelos,et al.  THREE-WAY CATALYTIC CONVERTER MODELING AND APPLICATIONS , 1998 .

[42]  J. L. Harned,et al.  Comparison of Catalyst Substrates for Catalytic Converter Systems , 1973 .

[43]  S. Chan,et al.  Modeling of Catalytic Conversion of CO/HC in Gasoline Exhaust at Engine Cold-Start , 1999 .

[44]  E. Hairer,et al.  Stiff and differential-algebraic problems , 1991 .

[45]  John B. Heywood,et al.  Internal combustion engine fundamentals , 1988 .

[46]  Anastassios M. Stamatelos,et al.  Three-Way Catalytic Converter Modeling as a Modern Engineering Design Tool , 2004 .

[47]  Grigorios C. Koltsakis,et al.  Influence of Pulsating Flow on Close-Coupled Catalyst Performance , 2005 .

[48]  James C. Cavendish,et al.  Mathematical modeling of catalytic converter lightoff. Part II: Model verification by engine‐dynamometer experiments , 1985 .

[49]  Grigorios C. Koltsakis,et al.  Oxygen Storage Modeling in Three-Way Catalytic Converters , 2002 .

[50]  Timothy C. Watling,et al.  Development and Validation of a One-Dimensional Computational Model of the Continuously Regenerating Diesel Particulate Filter (CR-DPF) System , 2005 .

[51]  Louise Olsson,et al.  Kinetic Modelling in Automotive Catalysis , 2004 .

[52]  Xiaogang Zhang,et al.  Thermomechanical Evaluation of Close Coupled Converter System , 2005 .

[53]  Bruce A. Finlayson,et al.  Mathematical models of the monolith catalytic converter: Part II. Application to automobile exhaust , 1976 .

[54]  Anastassios M. Stamatelos,et al.  The role of computer aided engineering in the design optimization of exhaust after-treatment systems , 1998 .

[55]  Advanced Low Platinum Group Metal Three-Way Catalyst for LEV-II and ULEV-II Compliance , 2001 .

[56]  Robert J. Kee,et al.  CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics , 1996 .

[57]  James C. Cavendish,et al.  Mathematical modeling of catalytic converter lightoff: Single‐pellet studies , 1980 .

[58]  U. Meinig,et al.  Tests on a New Diesel Particulate System with Traps of Metal Fleece , 1998 .

[59]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[61]  Rutherford Aris,et al.  On the effects of radiative heat transfer in monoliths , 1977 .

[62]  Bruce A. Finlayson,et al.  Mathematical Modeling of the Monolith Converter , 1975 .

[63]  Rolf Bombach,et al.  CATALYTIC COMBUSTION OF HYDROGEN-AIR MIXTURES OVER PLATINUM: VALIDATION OF HETERO/HOMOGENEOUS CHEMICAL REACTION SCHEMES , 2004 .

[64]  Gianluca D'Errico,et al.  The Prediction of 1d Unsteady Flows in the Exhaust System of a S.I. Engine Including Chemical Reactions in the Gas and Solid Phase , 2002 .

[65]  A. Arias-Garcia,et al.  A coupled 1D/3D simulation for the flow behaviour inside a close-coupled catalytic converter , 2003 .

[66]  D. Assanis,et al.  THE NUMERICAL SIMULATION OF VARIABLE-PROPERTY REACTING-GAS DYNAMICS: NEW INSIGHTS AND VALIDATION , 2004 .

[67]  E. Fridell,et al.  A Kinetic Study of NO Oxidation and NOx Storage on Pt/Al2O3 and Pt/BaO/Al2O3 , 2001 .

[68]  Paul Spurk,et al.  Modeling of SCR DeNOx Catalyst - Looking at the Impact of Substrate Attributes , 2003 .

[69]  James C. Schlatter,et al.  Three-Way Catalyst Response to Transients , 1980 .

[70]  Bruce A. Finlayson,et al.  Mathematical models of the monolith catalytic converter: Part I. Development of model and application of orthogonal collocation , 1976 .

[71]  R. Dictor A kinetic study of the water-gas shift reaction over Rh/Al2O3 catalysts , 1987 .

[72]  David L. Van Ostrom,et al.  A Three-Dimensional Model for the Analysis of Transient Thermal and Conversion Characteristics of Monolithic Catalytic Converters , 1988 .

[73]  R. Pletcher,et al.  Computational Fluid Mechanics and Heat Transfer. By D. A ANDERSON, J. C. TANNEHILL and R. H. PLETCHER. Hemisphere, 1984. 599 pp. $39.95. , 1986, Journal of Fluid Mechanics.

[74]  T. Shamim,et al.  Comparison of chemical kinetic mechanisms in simulating the emission characteristics of catalytic converters , 2000 .

[75]  Gianluca D'Errico,et al.  1D Unsteady Flows with Chemical Reactions in the Exhaust Duct-System of S.I. Engines: Predictions and Experiments , 2001 .

[76]  James Wei,et al.  Mathematical modeling of monolithic catalysts , 1976 .

[77]  Takeshi Kobayashi,et al.  Catalyst Design for Meeting Stringent LEV-2 NOx Regulation , 2002 .

[78]  Shuichi Kubo,et al.  Detailed Surface Reaction Model for Three-Way Catalyst and NOx Storage Reduction Catalyst , 2005 .

[79]  D. Katz,et al.  Fluid Dynamics and Heat Transfer , 1959 .

[80]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[81]  John G. Nunan,et al.  Impact of Pt-Rh and Pd-Rh Interactions on Performance of Bimetal Catalysts , 1995 .

[82]  T. Charng,et al.  Modelling of heat transfer in non-adiabatic monolith reactors and experimental comparisons of metal monoliths with packed beds , 1986 .

[83]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[84]  Leon Lapidus,et al.  On the stability of a detailed packed‐bed reactor , 1965 .

[85]  Leon Lapidus,et al.  A computational model for predicting and correlating the behavior of fixed‐bed reactors: I. Derivation of model for nonreactive systems , 1960 .

[86]  W. F. Biller,et al.  Thermal Behavior of Exhaust Gas Catalytic Convertor , 1968 .

[88]  Norman C. Otto,et al.  MATHEMATICAL MODELS FOR CATALYTIC CONVERTER PERFORMANCE , 1980 .

[89]  Ephraim M Sparrow,et al.  Flow in the hydrodynamic entrance region of ducts of arbitrary cross section , 1969 .

[90]  C. R. Morgan,et al.  Thermal Response and Emission Breakthrough of Platinum Monolithic Catalytic Converters , 1973 .

[91]  Zissis Samaras,et al.  Partial Regenerations in Diesel Particulate Filters , 2003 .

[92]  N. Amundson,et al.  Stability of Adiabatic Packed Bed Reactors. An Elementary Treatment , 1962 .

[93]  M. Twigg,et al.  High Temperature Durable Three-way Catalysts to Meet European Stage IV Emission Requirements , 2002 .