Increasing dominance of large lianas in Amazonian forests

[1]  O. Phillips,et al.  The changing ecology of tropical forests , 1997, Biodiversity & Conservation.

[2]  Mee-mann Chang Reexamination of the Relationship of Middle Devonian Osteolepids-Fossil Characters and Their Interpretations , 2004 .

[3]  Kevin D. Janni Global Patterns of Plant Diversity: Alwyn H. Gentry’s Forest Transect Data Set , 2003 .

[4]  C. Körner,et al.  In deep shade, elevated CO2 increases the vigor of tropical climbing plants , 2002 .

[5]  P. Greengard,et al.  Involvement of DARPP-32 phosphorylation in the stimulant action of caffeine , 2002, Nature.

[6]  O. Phillips,et al.  An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR) , 2002 .

[7]  Frans Bongers,et al.  The ecology of lianas and their role in forests , 2002 .

[8]  W. Sombroek,et al.  Spatial and Temporal Patterns of Amazon Rainfall , 2001 .

[9]  G. Retallack A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles , 2001, Nature.

[10]  Susan E. Trumbore,et al.  Carbon sink for a century , 2001, Nature.

[11]  F. Putz,et al.  Lianas and Trees in a Liana Forest of Amazonian Bolivia1 , 2001 .

[12]  W. Sombroek,et al.  Spatial and temporal patterns of Amazon rainfall. Consequences for the planning of agricultural occupation and the protection of primary forests. , 2001, Ambio.

[13]  P. Fearnside,et al.  RAIN FOREST FRAGMENTATION AND THE STRUCTURE OF AMAZONIAN LIANA COMMUNITIES , 2001 .

[14]  Christian Körner,et al.  Biosphere responses to CO2 enrichment. , 2000 .

[15]  R. Betts,et al.  Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model , 2000, Nature.

[16]  Andrew D. Friend,et al.  CO2 stabilization, climate change and the terrestrial carbon sink , 2000 .

[17]  Y. Malhi,et al.  Tropical forests and atmospheric carbon dioxide. , 2000, Trends in ecology & evolution.

[18]  Jeffrey J. Gerwing,et al.  Integrating liana abundance and forest stature into an estimate of total aboveground biomass for an eastern Amazonian forest , 2000, Journal of Tropical Ecology.

[19]  Yadvinder Malhi,et al.  Carbon dioxide transfer over a Central Amazonian rain forest , 1998 .

[20]  Zerina Johanson,et al.  Osteolepiforms and the ancestry of tetrapods , 1998, Nature.

[21]  Phillips,et al.  Changes in the carbon balance of tropical forests: evidence from long-term plots , 1998, Science.

[22]  P. Ahlberg,et al.  A complete primitive rhizodont from Australia , 1998, Nature.

[23]  A. Lugo,et al.  Estimating biomass and biomass change of tropical forests , 1997 .

[24]  S. Hubbell,et al.  Assessing the response of plant functional types to climatic change in tropical forests , 1996 .

[25]  John Moncrieff,et al.  Carbon Dioxide Uptake by an Undisturbed Tropical Rain Forest in Southwest Amazonia, 1992 to 1993 , 1995, Science.

[26]  Chang Mee-mann Diabolepis and its bearing on the relationships between porolepiforms and dipnoans , 1995 .

[27]  L. P. van Reeuwijk,et al.  Procedures for soil analysis , 1995 .

[28]  G. Müller,et al.  The Scientific Basis , 1995 .

[29]  O. Phillips,et al.  Increasing Turnover Through Time in Tropical Forests , 1994, Science.

[30]  M. Condon,et al.  Allocation patterns in two tropical vines in response to increased atmospheric CO2 , 1992 .

[31]  Harold A. Mooney,et al.  Biology of vines , 1989 .

[32]  J. Long A new rhizodontiform fish from the Early Carboniferous of Victoria, Australia, with remarks on the phylogenetic position of the group , 1989 .

[33]  B. Gardiner The relationships of the palaeoniscid fishesc a review based on new specimens of Mimia and Moythomasia from the Upper Devonian of Western Australia , 1984 .

[34]  F. Putz Liana biomass and leaf area of a «Tierra Firme» forest in the Rio Negro Basin, Venezuela , 1983 .