On matrices with common invariant cones with applications in neural and gene networks

[1]  G. Stewart Introduction to matrix computations , 1973 .

[2]  M. Marcus Finite dimensional multilinear algebra , 1973 .

[3]  L. Glass Classification of biological networks by their qualitative dynamics. , 1975, Journal of theoretical biology.

[4]  L. Glass Combinatorial and topological methods in nonlinear chemical kinetics , 1975 .

[5]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[6]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[7]  Dan Shemesh,et al.  Common eigenvectors of two matrices , 1984 .

[8]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[9]  P. Lancaster,et al.  Invariant subspaces of matrices with applications , 1986 .

[10]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[11]  Garry Howell,et al.  An Introduction to Chaotic dynamical systems. 2nd Edition, by Robert L. Devaney , 1990 .

[12]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[13]  Leon Glass,et al.  Nonlinear Dynamics and Symbolic Dynamics of Neural Networks , 1992, Neural Computation.

[14]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[15]  L. Glass,et al.  Chaos in high-dimensional neural and gene networks , 1996 .

[16]  R. Edwards Analysis of continuous-time switching networks , 2000 .

[17]  M. Tsatsomeros A criterion for the existence of common invariant subspaces of matrices , 2001 .