Perturbed Adaptive Belief Propagation Decoding for High-Density Parity-Check Codes

Algebraic codes such as BCH code are receiving renewed interest as their short block lengths and low/no error floors make them attractive for ultra-reliable low-latency communications (URLLC) in 5G wireless networks. This paper aims at enhancing the traditional adaptive belief propagation (ABP) decoding, which is a soft-in-soft-out (SISO) decoding for high-density parity-check (HDPC) algebraic codes, such as Reed-Solomon (RS) codes, Bose-Chaudhuri-Hocquenghem (BCH) codes, and product codes. The key idea of traditional ABP is to sparsify certain columns of the parity-check matrix corresponding to the least reliable bits with small log-likelihoodratio (LLR) values. This sparsification strategy may not be optimal when some bits have large LLR magnitudes but wrong signs. Motivated by this observation, we propose a Perturbed ABP (P-ABP) to incorporate a small number of unstable bits with large LLRs into the sparsification operation of the paritycheck matrix. In addition, we propose to apply partial layered scheduling or hybrid dynamic scheduling to further enhance the performance of P-ABP. Simulation results show that our proposed decoding algorithms lead to improved error correction performances and faster convergence rates than the prior-art ABP variants.

[1]  Rodrigo C. de Lamare,et al.  Knowledge-aided informed dynamic scheduling for LDPC decoding , 2015, 2015 IEEE International Conference on Communication Workshop (ICCW).

[2]  Johannes Van Wonterghem,et al.  Performance comparison of short-length error-correcting codes , 2016, 2016 Symposium on Communications and Vehicular Technologies (SCVT).

[3]  Saied Hemati,et al.  Symbol-Level Stochastic Chase Decoding of Reed-Solomon and BCH Codes , 2017, IEEE Transactions on Communications.

[4]  Alex J. Grant,et al.  Convergence analysis and optimal scheduling for multiple concatenated codes , 2005, IEEE Transactions on Information Theory.

[5]  Ramesh Pyndiah,et al.  Near-optimum decoding of product codes: block turbo codes , 1998, IEEE Trans. Commun..

[6]  Krishna R. Narayanan,et al.  Iterative Soft-Input Soft-Output Decoding of Reed-Solomon Codes by Adapting the , 2005 .

[7]  M. B. Damle,et al.  Comparative Analysis of Array Multiplier Using Different Logic Styles , 2013 .

[8]  Thomas J. Richardson,et al.  Error Floors of LDPC Codes , 2003 .

[9]  Robert J. McEliece,et al.  Iterative algebraic soft-decision list decoding of Reed-Solomon codes , 2005, IEEE Journal on Selected Areas in Communications.

[10]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[11]  Krishna R. Narayanan,et al.  Iterative soft decoding of Reed-Solomon codes , 2004, IEEE Communications Letters.

[12]  Jin Wenyi,et al.  Towards Maximum Likelihood Soft Decision Decoding of the (255,239) Reed Solomon Code , 2008, IEEE Transactions on Magnetics.

[13]  Norifumi Kamiya On algebraic soft-decision decoding algorithms for BCH codes , 2001, IEEE Trans. Inf. Theory.

[14]  Petar Popovski,et al.  Towards Massive, Ultra-Reliable, and Low-Latency Wireless Communication with Short Packets , 2015 .

[15]  Frank R. Kschischang,et al.  Applications of algebraic soft-decision decoding of Reed-Solomon codes , 2006, IEEE Transactions on Communications.

[16]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[17]  Shu Lin,et al.  Soft-decision decoding of linear block codes based on ordered statistics , 1994, IEEE Trans. Inf. Theory.

[18]  Ramesh Pyndiah,et al.  Performance of Reed-Solomon block turbo code , 1996, Proceedings of GLOBECOM'96. 1996 IEEE Global Telecommunications Conference.

[19]  Huang-Chang Lee,et al.  Iterative soft-decision decoding of Reed-Solomon codes using informed dynamic scheduling , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[20]  Ramesh Pyndiah,et al.  Near optimum decoding of product codes , 1994, 1994 IEEE GLOBECOM. Communications: The Global Bridge.

[21]  Yi Gong,et al.  Effective Informed Dynamic Scheduling for Belief Propagation Decoding of LDPC Codes , 2011, IEEE Transactions on Communications.

[22]  Ying-Chang Liang,et al.  Turbo Product Codes for Mobile Multimedia Broadcasting With Partial-Time Jamming , 2007, IEEE Transactions on Broadcasting.

[23]  Branka Vucetic,et al.  Short Block-Length Codes for Ultra-Reliable Low Latency Communications , 2019, IEEE Communications Magazine.

[24]  Gerhard Fettweis,et al.  Reduced Complexity LDPC Decoding using Forced Convergence , 2004 .

[25]  Juntan Zhang,et al.  Shuffled belief propagation decoding , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[26]  Joachim Hagenauer,et al.  The exit chart - introduction to extrinsic information transfer in iterative processing , 2004, 2004 12th European Signal Processing Conference.

[27]  Yong Liang Guan,et al.  Low-Complexity Belief-Propagation Decoding via Dynamic Silent-Variable-Node-Free Scheduling , 2017, IEEE Communications Letters.

[28]  G. David Forney,et al.  Generalized minimum distance decoding , 1966, IEEE Trans. Inf. Theory.

[29]  S. Litsyn,et al.  An efficient message-passing schedule for LDPC decoding , 2004, 2004 23rd IEEE Convention of Electrical and Electronics Engineers in Israel.

[30]  Bo Zhu,et al.  Stochastic Decoding of Linear Block Codes With High-Density Parity-Check Matrices , 2008, IEEE Transactions on Signal Processing.

[31]  David Chase,et al.  Class of algorithms for decoding block codes with channel measurement information , 1972, IEEE Trans. Inf. Theory.

[32]  Stephen B. Wicker,et al.  Reed-Solomon Codes and Their Applications , 1999 .

[33]  D. Divsalar A Simple Tight Bound on Error Probability of Block Codes with Application to Turbo Codes , 1999 .

[34]  M. El-Khamy,et al.  The average weight enumerator and the maximum likelihood performance of product codes , 2005, 2005 International Conference on Wireless Networks, Communications and Mobile Computing.

[35]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.

[36]  Richard D. Wesel,et al.  LDPC Decoders with Informed Dynamic Scheduling , 2010, IEEE Transactions on Communications.

[37]  Alexander Vardy,et al.  Algebraic soft-decision decoding of Reed-Solomon codes , 2003, IEEE Trans. Inf. Theory.

[38]  Lajos Hanzo,et al.  Turbo Coding, Turbo Equalisation and Space-Time Coding for Transmission over Fading Channels , 2002 .

[39]  Roberto Garello,et al.  On the Weight Enumerator and the Maximum Likelihood Performance of Linear Product Codes , 2006, ArXiv.

[40]  F. Moore,et al.  Polynomial Codes Over Certain Finite Fields , 2017 .

[41]  Amir H. Banihashemi,et al.  Decoding low-density parity-check codes with probabilistic scheduling , 2001, IEEE Communications Letters.

[42]  Christophe Jégo,et al.  Turbo decoding of product codes using adaptive belief propagation , 2009, IEEE Transactions on Communications.

[43]  Huang-Chang Lee,et al.  Two Informed Dynamic Scheduling Strategies for Iterative LDPC Decoders , 2013, IEEE Transactions on Communications.

[44]  G. Cancellieri,et al.  Low Complexity Soft-Decision Decoding of BCH and RS Codes based on Belief Propagation , 2008 .

[45]  M. Reza Soleymani,et al.  A Low Complexity Iterative Technique for Soft Decision Decoding of Reed-Solomon Codes , 2009, 2009 IEEE International Conference on Communications.

[46]  Yong Liang Guan,et al.  Edge-Based Dynamic Scheduling for Belief-Propagation Decoding of LDPC and RS Codes , 2017, IEEE Transactions on Communications.

[47]  Yuanbin Zhang,et al.  Variable-Node-Based Dynamic Scheduling Strategy for Belief-Propagation Decoding of LDPC Codes , 2015, IEEE Communications Letters.