A CEP104-CSPP1 Complex Is Required for Formation of Primary Cilia Competent in Hedgehog Signaling

[1]  Charles N. Baroud,et al.  Proteins that control the geometry of microtubules at the ends of cilia , 2018, The Journal of cell biology.

[2]  T. Stokke,et al.  The E3 ubiquitin ligase UBR5 regulates centriolar satellite stability and primary cilia , 2018, Molecular biology of the cell.

[3]  M. Nachury The molecular machines that traffic signaling receptors into and out of cilia. , 2018, Current opinion in cell biology.

[4]  J. Reiter,et al.  Genes and molecular pathways underpinning ciliopathies , 2017, Nature Reviews Molecular Cell Biology.

[5]  K. Nagashima,et al.  In Vitro Modeling Using Ciliopathy-Patient-Derived Cells Reveals Distinct Cilia Dysfunctions Caused by CEP290 Mutations. , 2017, Cell reports.

[6]  S. Christensen,et al.  Primary Cilia and Coordination of Receptor Tyrosine Kinase (RTK) and Transforming Growth Factor β (TGF-β) Signaling. , 2017, Cold Spring Harbor perspectives in biology.

[7]  K. Anderson,et al.  Primary Cilia and Mammalian Hedgehog Signaling. , 2017, Cold Spring Harbor perspectives in biology.

[8]  R. J. Ferland,et al.  Fixation methods can differentially affect ciliary protein immunolabeling , 2017, Cilia.

[9]  S. Saunier,et al.  KIF13B establishes a CAV1-enriched microdomain at the ciliary transition zone to promote Sonic hedgehog signalling , 2017, Nature Communications.

[10]  A. Andreeva,et al.  The Ciliopathy-Associated Cep104 Protein Interacts with Tubulin and Nek1 Kinase , 2017, Structure.

[11]  S. Burgess,et al.  A high-throughput functional genomics workflow based on CRISPR/Cas9-mediated targeted mutagenesis in zebrafish , 2016, Nature Protocols.

[12]  E. Lorentzen,et al.  The Intraflagellar Transport Machinery. , 2016, Cold Spring Harbor perspectives in biology.

[13]  M. Steinmetz,et al.  Biophysical and Structural Characterization of the Centriolar Protein Cep104 Interaction Network* , 2016, The Journal of Biological Chemistry.

[14]  P. Jackson,et al.  Smoothened determines β-arrestin–mediated removal of the G protein–coupled receptor Gpr161 from the primary cilium , 2016, The Journal of cell biology.

[15]  A. Panigrahy,et al.  Genetic link between renal birth defects and congenital heart disease , 2016, Nature Communications.

[16]  Davide Heller,et al.  eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences , 2015, Nucleic Acids Res..

[17]  Brian Raught,et al.  A Dynamic Protein Interaction Landscape of the Human Centrosome-Cilium Interface , 2015, Cell.

[18]  K. Lechtreck IFT-Cargo Interactions and Protein Transport in Cilia. , 2015, Trends in biochemical sciences.

[19]  L. Hetterschijt,et al.  KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome , 2015, Genome Biology.

[20]  M. Steinmetz,et al.  Control of microtubule organization and dynamics: two ends in the limelight , 2015, Nature Reviews Molecular Cell Biology.

[21]  C. Fallet-Bianco,et al.  Joubert Syndrome in French Canadians and Identification of Mutations in CEP104. , 2015, American journal of human genetics.

[22]  Colin A. Johnson,et al.  MKS1 regulates ciliary INPP5E levels in Joubert syndrome , 2015, Journal of Medical Genetics.

[23]  Johannes Söding,et al.  Automatic Prediction of Protein 3D Structures by Probabilistic Multi-template Homology Modeling , 2015, PLoS Comput. Biol..

[24]  J. Liao,et al.  Superresolution Pattern Recognition Reveals the Architectural Map of the Ciliary Transition Zone , 2015, Scientific Reports.

[25]  T. Stokke,et al.  Replication-induced DNA damage after PARP inhibition causes G2 delay, and cell line-dependent apoptosis, necrosis and multinucleation , 2015, Cell cycle.

[26]  S. Schurmans,et al.  Phosphoinositides Regulate Ciliary Protein Trafficking to Modulate Hedgehog Signaling. , 2015, Developmental cell.

[27]  S. Schiffmann,et al.  Modulation of Ciliary Phosphoinositide Content Regulates Trafficking and Sonic Hedgehog Signaling Output. , 2015, Developmental cell.

[28]  T. Stokke,et al.  CSPP-L Associates with the Desmosome of Polarized Epithelial Cells and Is Required for Normal Spheroid Formation , 2015, PloS one.

[29]  Lucien E. Weiss,et al.  Single-molecule imaging of Hedgehog pathway protein Smoothened in primary cilia reveals binding events regulated by Patched1 , 2015, Proceedings of the National Academy of Sciences.

[30]  Janan T. Eppig,et al.  Global genetic analysis in mice unveils central role for cilia in congenital heart disease , 2015, Nature.

[31]  Colin A. Johnson,et al.  Functional genome-wide siRNA screen identifies KIAA0586 as mutated in Joubert syndrome , 2015, eLife.

[32]  Colin A. Johnson,et al.  IFT27 links the BBSome to IFT for maintenance of the ciliary signaling compartment. , 2014, Developmental cell.

[33]  Yin Loon Lee,et al.  Cby1 promotes Ahi1 recruitment to a ring-shaped domain at the centriole–cilium interface and facilitates proper cilium formation and function , 2014, Molecular biology of the cell.

[34]  P. Thelwall,et al.  Murine Joubert syndrome reveals Hedgehog signaling defects as a potential therapeutic target for nephronophthisis , 2014, Proceedings of the National Academy of Sciences.

[35]  K. Anderson,et al.  The Kinesin-4 Protein KIF7 Regulates Mammalian Hedgehog Signaling by Organizing the Cilia Tip Compartment , 2014, Nature Cell Biology.

[36]  P. Bastin,et al.  The GTPase IFT27 is involved in both anterograde and retrograde intraflagellar transport , 2014, eLife.

[37]  M. Tyers,et al.  BoxPlotR: a web tool for generation of box plots , 2014, Nature Methods.

[38]  Colin A. Johnson,et al.  Mutations in CSPP1, encoding a core centrosomal protein, cause a range of ciliopathy phenotypes in humans. , 2014, American journal of human genetics.

[39]  S. Gabriel,et al.  Mutations in CSPP1 lead to classical Joubert syndrome. , 2014, American journal of human genetics.

[40]  J. Shendure,et al.  Mutations in CSPP1 cause primary cilia abnormalities and Joubert syndrome with or without Jeune asphyxiating thoracic dystrophy. , 2014, American journal of human genetics.

[41]  L. Larsen,et al.  Cilia and coordination of signaling networks during heart development , 2014, Organogenesis.

[42]  A. Munnich,et al.  A Homozygous PDE6D Mutation in Joubert Syndrome Impairs Targeting of Farnesylated INPP5E Protein to the Primary Cilium , 2014, Human mutation.

[43]  J. Rosenbaum,et al.  Centrosomal protein CEP104 (Chlamydomonas FAP256) moves to the ciliary tip during ciliary assembly , 2013, Journal of Cell Science.

[44]  E. Valente,et al.  Joubert syndrome: congenital cerebellar ataxia with the molar tooth , 2013, The Lancet Neurology.

[45]  David A. Scott,et al.  Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity , 2013, Cell.

[46]  E. Nigg,et al.  Molecular Basis of Tubulin Transport Within the Cilium by IFT74 and IFT81 , 2013, Science.

[47]  M. Mahjoub The importance of a single primary cilium , 2013, Organogenesis.

[48]  T. Stokke,et al.  Role of CSPP-L in recruitment of ciliopathy proteins to centriolar satellites and the ciliary transition zone , 2012, Cilia.

[49]  V. Sheffield,et al.  ARL13B, PDE6D, and CEP164 form a functional network for INPP5E ciliary targeting , 2012, Proceedings of the National Academy of Sciences.

[50]  Laurence Pelletier,et al.  Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material , 2012, Nature Cell Biology.

[51]  Norman E. Davey,et al.  A Proteome-wide Screen for Mammalian SxIP Motif-Containing Microtubule Plus-End Tracking Proteins , 2012, Current Biology.

[52]  Nathalie Spassky,et al.  Analysis of human samples reveals impaired SHH-dependent cerebellar development in Joubert syndrome/Meckel syndrome , 2012, Proceedings of the National Academy of Sciences.

[53]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[54]  J. Reiter,et al.  The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization , 2012, EMBO reports.

[55]  G. Pazour,et al.  IFT25 links the signal-dependent movement of Hedgehog components to intraflagellar transport. , 2012, Developmental cell.

[56]  Ben Chih,et al.  A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain , 2011, Nature Cell Biology.

[57]  H. May-Simera,et al.  Cilia, Wnt signaling, and the cytoskeleton , 2012, Cilia.

[58]  C. E. Larkins,et al.  Arl13b regulates ciliogenesis and the dynamic localization of Shh signaling proteins , 2011, Molecular biology of the cell.

[59]  F. Chang,et al.  Regulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP. , 2011, Trends in cell biology.

[60]  H. Zentgraf,et al.  Mutations in KIF7 link Joubert syndrome with Sonic Hedgehog signaling and microtubule dynamics. , 2011, The Journal of clinical investigation.

[61]  J. García-Verdugo,et al.  A Transition Zone Complex Regulates Mammalian Ciliogenesis and Ciliary Membrane Composition , 2011, Nature Genetics.

[62]  C. Basquin,et al.  Crystal structure of the intraflagellar transport complex 25/27 , 2011, The EMBO journal.

[63]  Matthew J. Brauer,et al.  Mapping the NPHP-JBTS-MKS Protein Network Reveals Ciliopathy Disease Genes and Pathways , 2011, Cell.

[64]  P. Beales,et al.  Ciliopathies: an expanding disease spectrum , 2011, Pediatric Nephrology.

[65]  William Arbuthnot Sir Lane,et al.  TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia. , 2010, Genes & development.

[66]  T. Stokke,et al.  CSPP Is a Ciliary Protein Interacting with Nephrocystin 8 and Required for Cilia Formation , 2010, Molecular biology of the cell.

[67]  S. Schiffmann,et al.  INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse , 2009, Nature Genetics.

[68]  E. Bertini,et al.  Mutations in the inositol polyphosphate-5-phosphatase E gene link phosphatidyl inositol signaling to the ciliopathies , 2009, Nature Genetics.

[69]  P. Yaswen,et al.  A Versatile Viral System for Expression and Depletion of Proteins in Mammalian Cells , 2009, PloS one.

[70]  Julie J. Miller,et al.  High‐throughput generation of tagged stable cell lines for proteomic analysis , 2009, Proteomics.

[71]  Johannes Söding,et al.  Fast and accurate automatic structure prediction with HHpred , 2009, Proteins.

[72]  Akiko Yuba-Kubo,et al.  Sentan: a novel specific component of the apical structure of vertebrate motile cilia. , 2008, Molecular biology of the cell.

[73]  Colin A. Johnson,et al.  Mutations in the cilia gene ARL13B lead to the classical form of Joubert syndrome. , 2008, American journal of human genetics.

[74]  A. Joyner,et al.  Hedgehog signaling plays a cell-autonomous role in maximizing cardiac developmental potential , 2008, Development.

[75]  S. Letteboer,et al.  Versatile screening for binary protein-protein interactions by yeast two-hybrid mating. , 2008, Methods in molecular biology.

[76]  R. Dildrop,et al.  Ftm is a novel basal body protein of cilia involved in Shh signalling , 2007, Development.

[77]  S. Patzke,et al.  Characterization of the FAM110 gene family. , 2007, Genomics.

[78]  V. Sheffield,et al.  A Core Complex of BBS Proteins Cooperates with the GTPase Rab8 to Promote Ciliary Membrane Biogenesis , 2007, Cell.

[79]  T. Stokke,et al.  CSPP and CSPP‐L associate with centrosomes and microtubules and differently affect microtubule organization , 2006, Journal of cellular physiology.

[80]  J. Delabie,et al.  Identification of a novel centrosome/microtubule-associated coiled-coil protein involved in cell-cycle progression and spindle organization , 2005, Oncogene.

[81]  C. Walsh,et al.  Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome , 2004, Nature Genetics.

[82]  F. Hsieh,et al.  Germ‐line transmission of a myocardium‐specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish , 2003, Developmental dynamics : an official publication of the American Association of Anatomists.

[83]  Xin Zeng,et al.  A freely diffusible form of Sonic hedgehog mediates long-range signalling , 2001, Nature.

[84]  S. Ekker,et al.  Effective targeted gene ‘knockdown’ in zebrafish , 2000, Nature Genetics.

[85]  H Okamoto,et al.  Visualization of Cranial Motor Neurons in Live Transgenic Zebrafish Expressing Green Fluorescent Protein Under the Control of the Islet-1 Promoter/Enhancer , 2000, The Journal of Neuroscience.

[86]  Anders Gorm Pedersen,et al.  Neural Network Prediction of Translation Initiation Sites in Eukaryotes: Perspectives for EST and Genome Analysis , 1997, ISMB.

[87]  P. Beech,et al.  The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane , 1995, The Journal of cell biology.

[88]  C. Kimmel,et al.  Stages of embryonic development of the zebrafish , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[89]  M. Westerfield The zebrafish book : a guide for the laboratory use of zebrafish (Danio rerio) , 1995 .

[90]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[91]  E. Reynolds THE USE OF LEAD CITRATE AT HIGH pH AS AN ELECTRON-OPAQUE STAIN IN ELECTRON MICROSCOPY , 1963, The Journal of cell biology.