Accurate quotient-difference algorithm: Error analysis, improvements and applications
暂无分享,去创建一个
Lizhi Cheng | Roberto Barrio | Hao Jiang | Peibing Du | Lizhi Cheng | R. Barrio | Hao Jiang | P. Du | Peibing Du
[1] Lizhi Cheng,et al. Accurate Evaluation of Polynomials in Legendre Basis , 2014, J. Appl. Math..
[2] B. Parlett,et al. From qd to LR, or, how were the qd and LR algorithms discovered? , 2011 .
[3] Siegfried M. Rump,et al. Accurate Sum and Dot Product , 2005, SIAM J. Sci. Comput..
[4] Philippe Langlois,et al. Compensated Horner Scheme , 2005, Algebraic and Numerical Algorithms and Computer-assisted Proofs.
[5] Philippe Langlois,et al. More Instruction Level Parallelism Explains the Actual Efficiency of Compensated Algorithms , 2007 .
[6] Philippe Langlois,et al. How to Ensure a Faithful Polynomial Evaluation with the Compensated Horner Algorithm , 2007, 18th IEEE Symposium on Computer Arithmetic (ARITH '07).
[7] Lisa Lorentzen,et al. Padé approximation and continued fractions , 2010 .
[8] J. Hadamard,et al. Essai sur l'étude des fonctions données par leur développement de Taylor , 1892 .
[9] Hassane Allouche,et al. Reliable root detection with the qd-algorithm: When Bernoulli, Hadamard and Rutishauser cooperate , 2010 .
[10] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[11] G. Szegő. Polynomials orthogonal on the unit circle , 1939 .
[12] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[13] Donald E. Knuth. The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .
[14] Xiangke Liao,et al. Accurate evaluation of a polynomial in Chebyshev form , 2011, Appl. Math. Comput..
[15] Annie A. M. Cuyt. Floating-point versus Symbolic Computations in theQD-algorithm , 1997, J. Symb. Comput..
[16] Siegfried M. Rump,et al. Accurate Floating-Point Summation Part I: Faithful Rounding , 2008, SIAM J. Sci. Comput..
[17] Donald Ervin Knuth,et al. The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .
[18] Nicolas Louvet,et al. Algorithmes compensés en arithmétique flottante : précision, validation, performances. (Compensated algorithms in floating point arithmetic : accuracy, validation, performances) , 2007 .
[19] Philippe Langlois,et al. Algorithms for accurate, validated and fast polynomial evaluation , 2009 .
[20] Henry C. Thacher,et al. Applied and Computational Complex Analysis. , 1988 .
[21] Yves Nievergelt,et al. Scalar fused multiply-add instructions produce floating-point matrix arithmetic provably accurate to the penultimate digit , 2003, TOMS.
[22] Peter Henrici,et al. Finding zeros of a polynomial by the Q-D algorithm , 1965, CACM.
[23] Xiaoye S. Li,et al. Algorithms for quad-double precision floating point arithmetic , 2000, Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001.
[24] Lizhi Cheng,et al. Accurate evaluation of a polynomial and its derivative in Bernstein form , 2010, Comput. Math. Appl..
[25] Siegfried M. Rump,et al. Verification methods: rigorous results using floating-point arithmetic , 2010, Acta Numerica.
[26] T. J. Dekker,et al. A floating-point technique for extending the available precision , 1971 .
[27] Heinz Rutishauser. Anwendungen des Quotienten-Differenzen-Algorithmus , 1954 .
[28] H. Rutishauser. Der Quotienten-Differenzen-Algorithmus , 1954 .
[29] A. C. Aitken. XXV.—On Bernoulli's Numerical Solution of Algebraic Equations , 1927 .
[30] B. Parlett. What Hadamard Missed , 1996 .
[31] Jim Euchner. Design , 2014, Catalysis from A to Z.
[32] A. C. Aitken. XII.—Further Numerical Studies in Algebraic Equations and Matrices , 1932 .
[33] James Demmel,et al. Design, implementation and testing of extended and mixed precision BLAS , 2000, TOMS.
[34] W. J. Thron,et al. Continued Fractions: Analytic Theory and Applications , 1984 .
[35] Annie A. M. Cuyt,et al. Handbook of Continued Fractions for Special Functions , 2008 .
[36] Siegfried M. Rump,et al. Accurate Floating-Point Summation Part II: Sign, K-Fold Faithful and Rounding to Nearest , 2008, SIAM J. Sci. Comput..
[37] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[38] Peter W. Markstein,et al. IA-64 and elementary functions - speed and precision , 2000 .
[39] B. Parlett,et al. Accurate singular values and differential qd algorithms , 1994 .