Gabor-Based Region Covariance Matrices for Face Recognition

This paper presents a new method for human face recognition by utilizing Gabor-based region covariance matrices as face descriptors. Both pixel locations and Gabor coefficients are employed to form the covariance matrices. Experimental results demonstrate the advantages of this proposed method.

[1]  Witold Pedrycz,et al.  Face recognition: A study in information fusion using fuzzy integral , 2005, Pattern Recognit. Lett..

[2]  Hyeonjoon Moon,et al.  The FERET Evaluation Methodology for Face-Recognition Algorithms , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Chengjun Liu,et al.  Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition , 2002, IEEE Trans. Image Process..

[4]  Fatih Murat Porikli,et al.  Fast Construction of Covariance Matrices for Arbitrary Size Image Windows , 2006, 2006 International Conference on Image Processing.

[5]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[6]  Tai Sing Lee,et al.  Image Representation Using 2D Gabor Wavelets , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Xuelong Li,et al.  Which Components are Important for Interactive Image Searching? , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[8]  W. Förstner,et al.  A Metric for Covariance Matrices , 2003 .

[9]  Norbert Krüger,et al.  Face Recognition by Elastic Bunch Graph Matching , 1997, CAIP.

[10]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[11]  Fatih Murat Porikli,et al.  Robust License Plate Detection Using Covariance Descriptor in a Neural Network Framework , 2006, 2006 IEEE International Conference on Video and Signal Based Surveillance.

[12]  Xuelong Li,et al.  Discriminant Locally Linear Embedding With High-Order Tensor Data , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[13]  Wen Gao,et al.  Curse of mis-alignment in face recognition: problem and a novel mis-alignment learning solution , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[14]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[15]  Fatih Murat Porikli,et al.  Human Detection via Classification on Riemannian Manifolds , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Xuelong Li,et al.  General Tensor Discriminant Analysis and Gabor Features for Gait Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Fatih Murat Porikli,et al.  Covariance Tracking using Model Update Based on Lie Algebra , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[18]  Fatih Murat Porikli,et al.  Region Covariance: A Fast Descriptor for Detection and Classification , 2006, ECCV.

[19]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[20]  Avinash C. Kak,et al.  PCA versus LDA , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Xuelong Li,et al.  Direct kernel biased discriminant analysis: a new content-based image retrieval relevance feedback algorithm , 2006, IEEE Transactions on Multimedia.

[22]  Xuelong Li,et al.  Human Gait Recognition With Matrix Representation , 2006, IEEE Transactions on Circuits and Systems for Video Technology.

[23]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[24]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[25]  Patrick J. Flynn,et al.  Overview of the face recognition grand challenge , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).