NLRP3 inflammasome pathway in atherosclerosis: Focusing on the therapeutic potential of non-coding RNAs.

[1]  Tieliang Zhang,et al.  Circ_0026218 ameliorates oxidized low-density lipoprotein-induced vascular endothelial cell dysfunction by regulating miR-188-3p/TLR4/NF-κB pathway. , 2022, Cardiovascular drugs and therapy.

[2]  Weijian Huang,et al.  Hsa_circ_0007478 aggravates NLRP3 inflammasome activation and lipid metabolism imbalance in ox-LDL-stimulated macrophage via miR-765/EFNA3 axis. , 2022, Chemico-biological interactions.

[3]  Lei Zhang,et al.  Circ_0005699 participates in ox-LDL-induced human umbilical vein endothelial cell injury via targeting the miR-636/TLR4/NF-κB pathway , 2022, Biochemical Engineering Journal.

[4]  Jianye Peng,et al.  Resveratrol protects against ox-LDL-induced endothelial dysfunction in atherosclerosis via depending on circ_0091822/miR-106b-5p-mediated upregulation of TLR4 , 2022, Immunopharmacology and immunotoxicology.

[5]  Wei Xu,et al.  MicroRNA-223-3p inhibits oxidized low-density lipoprotein-mediated NLRP3 inflammasome activation via directly targeting NLRP3 and FOXO3. , 2022, Clinical hemorheology and microcirculation.

[6]  Na Kong,et al.  Synthesis of siRNA nanoparticles to silence plaque-destabilizing gene in atherosclerotic lesional macrophages , 2022, Nature Protocols.

[7]  Liying Jin,et al.  miR-155 activates the NLRP3 inflammasome by regulating the MEK/ERK/NF-κB pathway in carotid atherosclerotic plaques in ApoE−/− mice , 2022, Journal of Physiology and Biochemistry.

[8]  Wei Jia,et al.  MicroRNA-126-5p inhibits apoptosis of endothelial cell in vascular arterial walls via NF‑κB/PI3K/AKT/mTOR signaling pathway in atherosclerosis , 2022, Journal of Molecular Histology.

[9]  F. Mach,et al.  NLRP3 Inflammasome Activation Controls Vascular Smooth Muscle Cells Phenotypic Switch in Atherosclerosis , 2021, International journal of molecular sciences.

[10]  R. Zhou,et al.  NLRP3 inflammasome activation and cell death , 2021, Cellular & Molecular Immunology.

[11]  Dejun Yu,et al.  LncRNA Miat knockdown alleviates endothelial cell injury through regulation of miR‐214‐3p/Caspase‐1 signalling during atherogenesis , 2021, Clinical and experimental pharmacology & physiology.

[12]  Heng Ma,et al.  Long Noncoding RNA MALAT1 Regulates the Progression of Atherosclerosis by miR-330-5p/NF-κB Signal Pathway , 2021, Journal of cardiovascular pharmacology.

[13]  Yanxia Chen,et al.  LncRNA OIP5-AS1 accelerates ox-LDL-treated HUVECs injury by NF-κB pathway via miR-30c-5p. , 2021, Clinical hemorheology and microcirculation.

[14]  Jianfeng Huang,et al.  MiR-520b inhibits endothelial activation by targeting NF-κB p65-VCAM1 axis. , 2021, Biochemical pharmacology.

[15]  T. Kanneganti,et al.  NLRP3 inflammasome in cancer and metabolic diseases , 2021, Nature Immunology.

[16]  Joo Young Lee,et al.  Regulation of the NLRP3 Inflammasome by Post-Translational Modifications and Small Molecules , 2021, Frontiers in Immunology.

[17]  Masafumi Takahashi NLRP3 inflammasome as a key driver of vascular disease. , 2021, Cardiovascular research.

[18]  Zhongzhou Guo,et al.  Reduced SULT2B1b expression alleviates ox-LDL-induced inflammation by upregulating miR-148-3P via inhibiting the IKKβ/NF-κB pathway in macrophages. , 2021, Aging.

[19]  N. Akimitsu,et al.  The Functions and Unique Features of LncRNAs in Cancer Development and Tumorigenesis , 2021, International journal of molecular sciences.

[20]  X-B Dong,et al.  Knockdown of circ_0003204 alleviates oxidative low-density lipoprotein-induced human umbilical vein endothelial cells injury: Circulating RNAs could explain atherosclerosis disease progression , 2021, Open medicine.

[21]  D. Sviridov,et al.  Specific NLRP3 Inhibition Protects Against Diabetes-Associated Atherosclerosis , 2020, Diabetes.

[22]  F. Crea,et al.  NLRP3 inflammasome: a new promising therapeutic target to treat heart failure. , 2020, Journal of cardiovascular pharmacology.

[23]  V. Costa,et al.  LncRNAs in Cancer: From garbage to Junk , 2020, Cancers.

[24]  J. Canada,et al.  Phase 1B, Randomized, Double-Blinded, Dose Escalation, Single-Center, Repeat Dose Safety and Pharmacodynamics Study of the Oral NLRP3 Inhibitor Dapansutrile in Subjects With NYHA II–III Systolic Heart Failure , 2020, Journal of cardiovascular pharmacology.

[25]  G. Hankey,et al.  Colchicine in Patients with Chronic Coronary Disease. , 2020, The New England journal of medicine.

[26]  J. Cornel,et al.  Colchicine Attenuates Inflammation Beyond the Inflammasome in Chronic Coronary Artery Disease: A LoDoCo2 Proteomic Substudy. , 2020, Circulation.

[27]  Songling Han,et al.  Site‐Specific MicroRNA‐33 Antagonism by pH‐Responsive Nanotherapies for Treatment of Atherosclerosis via Regulating Cholesterol Efflux and Adaptive Immunity , 2020, Advanced Functional Materials.

[28]  Arif-ullah Khan,et al.  A Spotlight on the Underlying Activation Mechanisms of the NLRP3 Inflammasome and its Role in Atherosclerosis: A Review , 2020, Inflammation.

[29]  M. Banach,et al.  Anti-inflammatory Action of Statins in Cardiovascular Disease: the Role of Inflammasome and Toll-Like Receptor Pathways , 2020, Clinical Reviews in Allergy & Immunology.

[30]  Y. Tong,et al.  NLRP3 Inflammasome and Its Central Role in the Cardiovascular Diseases , 2020, Oxidative medicine and cellular longevity.

[31]  Huifang Liu,et al.  MiR-140-5p inhibits oxidized low-density lipoprotein-induced oxidative stress and cell apoptosis via targeting toll-like receptor 4 , 2020, Gene Therapy.

[32]  Zhongzhou Guo,et al.  SULT2B1b inhibits reverse cholesterol transport and promotes cholesterol accumulation and inflammation in lymphocytes from AMI patients with low LDL-C levels. , 2020, Clinical science.

[33]  Zhentao Zhang,et al.  VX-765 attenuates atherosclerosis in ApoE deficient mice by modulating VSMCs pyroptosis. , 2020, Experimental cell research.

[34]  T. Kanneganti,et al.  Inflammasomes and the fine line between defense and disease. , 2019, Current opinion in immunology.

[35]  A. Tsezou,et al.  The synergistic function of miR-140-5p and miR-146a on TLR4-mediated cytokine secretion in osteoarthritic chondrocytes. , 2019, Biochemical and biophysical research communications.

[36]  F-W Shi,et al.  LncRNA SNHG16 promoted proliferation and inflammatory response of macrophages through miR-17-5p/NF-κB signaling pathway in patients with atherosclerosis. , 2019, European review for medical and pharmacological sciences.

[37]  B. Lei,et al.  Long non-coding RNA RPPH1 promotes the proliferation, invasion and migration of human acute myeloid leukemia cells through down-regulating miR-330-5p expression , 2019, EXCLI journal.

[38]  Jichun Yang,et al.  Long Non-Coding RNA in the Pathogenesis of Cancers , 2019, Cells.

[39]  T. Karlsen,et al.  Multi-pathway Protective Effects of MicroRNAs on Human Chondrocytes in an In Vitro Model of Osteoarthritis , 2019, Molecular therapy. Nucleic acids.

[40]  Peijing Zhang,et al.  Non-Coding RNAs and their Integrated Networks , 2019, J. Integr. Bioinform..

[41]  Yuan He,et al.  The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation , 2019, International journal of molecular sciences.

[42]  Ying Jin,et al.  Novel Insights Into the NLRP3 Inflammasome in Atherosclerosis , 2019, Journal of the American Heart Association.

[43]  Maolin Yan,et al.  Silencing of long noncoding RNA LINC00958 prevents tumor initiation of pancreatic cancer by acting as a sponge of microRNA-330-5p to down-regulate PAX8. , 2019, Cancer letters.

[44]  Yujie Liu,et al.  Long noncoding RNA OIP5-AS1 accelerates the ox-LDL mediated vascular endothelial cells apoptosis through targeting GSK-3β via recruiting EZH2. , 2019, American journal of translational research.

[45]  Y. Suárez,et al.  Non-coding RNA regulation of endothelial and macrophage functions during atherosclerosis. , 2019, Vascular pharmacology.

[46]  Chuanyu Gao,et al.  MiR-590 Inhibits Endothelial Cell Apoptosis by Inactivating the TLR4/NF-κB Pathway in Atherosclerosis , 2019, Yonsei medical journal.

[47]  R. Guo,et al.  Long noncoding RNA MALAT1 promotes high glucose-induced human endothelial cells pyroptosis by affecting NLRP3 expression through competitively binding miR-22. , 2019, Biochemical and biophysical research communications.

[48]  C. Sena,et al.  Vascular Oxidative Stress: Impact and Therapeutic Approaches , 2018, Front. Physiol..

[49]  Liping Jiang,et al.  Acrolein induces NLRP3 inflammasome-mediated pyroptosis and suppresses migration via ROS-dependent autophagy in vascular endothelial cells. , 2018, Toxicology.

[50]  Jing-Min Lu,et al.  MiR‐182‐5p inhibited oxidative stress and apoptosis triggered by oxidized low‐density lipoprotein via targeting toll‐like receptor 4 , 2018, Journal of cellular physiology.

[51]  Zun-Ping Ke,et al.  Silence of long intergenic noncoding RNA HOTAIR ameliorates oxidative stress and inflammation response in ox‐LDL‐treated human macrophages by upregulating miR‐330‐5p , 2018, Journal of cellular physiology.

[52]  S. Blankenberg,et al.  Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. , 2018, European heart journal.

[53]  Anindita Das,et al.  Deciphering Non-coding RNAs in Cardiovascular Health and Disease , 2018, Front. Cardiovasc. Med..

[54]  Jing-Min Lu,et al.  MiR‐370 inhibits vascular inflammation and oxidative stress triggered by oxidized low‐density lipoprotein through targeting TLR4 , 2018, Journal of cellular biochemistry.

[55]  K. Yin,et al.  Long Non-Coding RNA Malat1 Regulates Angiogenesis in Hindlimb Ischemia , 2018, International journal of molecular sciences.

[56]  N. Leeper,et al.  Non-coding RNAs: key regulators of smooth muscle cell fate in vascular disease , 2018, Cardiovascular research.

[57]  H. Mirzaei,et al.  NLRP3 inflammasome: Its regulation and involvement in atherosclerosis , 2018, Journal of cellular physiology.

[58]  P. Oettgen,et al.  Angiogenic patterning by STEEL, an endothelial-enriched long noncoding RNA , 2018, Proceedings of the National Academy of Sciences.

[59]  Hailing Cheng,et al.  H19 knockdown suppresses proliferation and induces apoptosis by regulating miR-148b/WNT/β-catenin in ox-LDL -stimulated vascular smooth muscle cells , 2018, Journal of Biomedical Science.

[60]  Viorel Simion,et al.  LncRNAs in vascular biology and disease. , 2018, Vascular pharmacology.

[61]  Brandon J Thomas,et al.  Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA , 2018, Nature Medicine.

[62]  R. Ochani,et al.  Canakinumab and cardiovascular outcomes: results of the CANTOS trial , 2018, Journal of community hospital internal medicine perspectives.

[63]  D. Celermajer,et al.  The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation. , 2017, Atherosclerosis.

[64]  Z. Mallat,et al.  NLRP3 inflammasome pathways in atherosclerosis. , 2017, Atherosclerosis.

[65]  V. Dixit,et al.  A new lead to NLRP3 inhibition , 2017, The Journal of experimental medicine.

[66]  Bo Yu,et al.  Circular RNA hsa_circ_0003575 regulates oxLDL induced vascular endothelial cells proliferation and angiogenesis. , 2017, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[67]  F. Huang,et al.  Protective Effects of Microrna-22 Against Endothelial Cell Injury by Targeting NLRP3 Through Suppression of the Inflammasome Signaling Pathway in a Rat Model of Coronary Heart Disease , 2017, Cellular Physiology and Biochemistry.

[68]  Xing Pei,et al.  Low-dose Sinapic Acid Abates the Pyroptosis of Macrophages by Downregulation of lncRNA-MALAT1 in Rats With Diabetic Atherosclerosis , 2017, Journal of cardiovascular pharmacology.

[69]  P. Libby,et al.  Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease , 2017, The New England journal of medicine.

[70]  Petar Glažar,et al.  A map of human circular RNAs in clinically relevant tissues , 2017, Journal of Molecular Medicine.

[71]  Marius C. Jones,et al.  Long Noncoding RNA Facilitated Gene Therapy Reduces Atherosclerosis in a Murine Model of Familial Hypercholesterolemia. , 2017, Circulation.

[72]  A. Orekhov,et al.  Mechanisms of foam cell formation in atherosclerosis , 2017, Journal of Molecular Medicine.

[73]  J. Kuiper,et al.  NLRP3 Inflammasome Inhibition by MCC950 Reduces Atherosclerotic Lesion Development in Apolipoprotein E–Deficient Mice—Brief Report , 2017, Arteriosclerosis, thrombosis, and vascular biology.

[74]  A. Bhan,et al.  Long Noncoding RNA and Cancer: A New Paradigm. , 2017, Cancer research.

[75]  P. Decuzzi,et al.  Methotraxate‐Loaded Hybrid Nanoconstructs Target Vascular Lesions and Inhibit Atherosclerosis Progression in ApoE−/− Mice , 2017, Advanced healthcare materials.

[76]  Y. Mo,et al.  LncRNA-mediated regulation of cell signaling in cancer , 2017, Oncogene.

[77]  S. Juo,et al.  Let-7g suppresses both canonical and non-canonical NF-κB pathways in macrophages leading to anti-atherosclerosis. , 2017, Oncotarget.

[78]  Mulin Jun Li,et al.  Long noncoding RNA LINC00305 promotes inflammation by activating the AHRR-NF-κB pathway in human monocytes , 2017, Scientific Reports.

[79]  K. Rayner,et al.  MicroRNAs in the Pathobiology and Therapy of Atherosclerosis. , 2017, The Canadian journal of cardiology.

[80]  R. Koenen,et al.  Deletion of junctional adhesion molecule A from platelets increases early‐stage neointima formation after wire injury in hyperlipidemic mice , 2017, Journal of cellular and molecular medicine.

[81]  Chenhui Lu,et al.  Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR‐23c targeting of ELAVL1 in diabetic nephropathy , 2017, Experimental cell research.

[82]  L. Clarke,et al.  Human Epididymis Protein 4: A Novel Serum Inflammatory Biomarker in Cystic Fibrosis. , 2016, Chest.

[83]  M. Mann,et al.  Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans , 2016, Nature Communications.

[84]  Lan Huang,et al.  DNMT1-PPARγ pathway in macrophages regulates chronic inflammation and atherosclerosis development in mice , 2016, Scientific Reports.

[85]  J. Qiu,et al.  Analysis of plasma miR-208a and miR-370 expression levels for early diagnosis of coronary artery disease , 2016, Biomedical reports.

[86]  Bei-Bei Su,et al.  MiR-330-5p regulates tyrosinase and PDIA3 expression and suppresses cell proliferation and invasion in cutaneous malignant melanoma. , 2016, The Journal of surgical research.

[87]  A. Schober,et al.  Mechanisms of MicroRNAs in Atherosclerosis. , 2016, Annual review of pathology.

[88]  P. Eriksson,et al.  NLRP3 Inflammasome Expression and Activation in Human Atherosclerosis , 2016, Journal of the American Heart Association.

[89]  S. Barnett,et al.  Comparative miRNA-Based Fingerprinting Reveals Biological Differences in Human Olfactory Mucosa- and Bone-Marrow-Derived Mesenchymal Stromal Cells , 2016, Stem cell reports.

[90]  Stefanie Dimmeler,et al.  Long Noncoding RNAs: From Clinical Genetics to Therapeutic Targets? , 2016, Journal of the American College of Cardiology.

[91]  K. Moore,et al.  MicroRNA Regulation of Atherosclerosis. , 2016, Circulation research.

[92]  G. Garcı́a-Cardeña,et al.  Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. , 2016, Circulation research.

[93]  M. Bennett,et al.  Vascular Smooth Muscle Cells in Atherosclerosis. , 2016, Circulation research.

[94]  G. Núñez,et al.  Nek7 is an essential mediator of NLRP3 activation downstream of potassium efflux , 2016, Nature.

[95]  G. Núñez,et al.  Caspase-11 Requires the Pannexin-1 Channel and the Purinergic P2X7 Pore to Mediate Pyroptosis and Endotoxic Shock. , 2015, Immunity.

[96]  P. Qu,et al.  Expression of the NLRP3 Inflammasome in Carotid Atherosclerosis. , 2015, Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association.

[97]  Y-L Zhao,et al.  MicroRNA-22 inhibits tumor growth and metastasis in gastric cancer by directly targeting MMP14 and Snail , 2015, Cell Death and Disease.

[98]  T. Wakatsuki,et al.  Expression of NLRP3 in subcutaneous adipose tissue is associated with coronary atherosclerosis. , 2015, Atherosclerosis.

[99]  S. Kummerfeld,et al.  Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling , 2015, Nature.

[100]  T. Cai,et al.  Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death , 2015, Nature.

[101]  Petar Glažar,et al.  Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. , 2015, Molecular cell.

[102]  Si Ming Man,et al.  Regulation of inflammasome activation , 2015, Immunological reviews.

[103]  F. Sutterwala,et al.  Initiation and perpetuation of NLRP3 inflammasome activation and assembly , 2015, Immunological reviews.

[104]  K. Schroder,et al.  A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases , 2015, Nature Medicine.

[105]  S. Dhanasekaran,et al.  The landscape of long noncoding RNAs in the human transcriptome , 2015, Nature Genetics.

[106]  E. Latz,et al.  Danger signaling in atherosclerosis. , 2015, Circulation research.

[107]  Sol Shenker,et al.  Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. , 2014, Cell reports.

[108]  P. Li,et al.  Inflammatory caspases are innate immune receptors for intracellular LPS , 2014, Nature.

[109]  F. Sutterwala,et al.  Mechanism of NLRP3 inflammasome activation , 2014, Annals of the New York Academy of Sciences.

[110]  D. Zheng,et al.  Identification and Initial Functional Characterization of a Human Vascular Cell–Enriched Long Noncoding RNA , 2014, Arteriosclerosis, thrombosis, and vascular biology.

[111]  Ming-Hung Chang,et al.  Let-7g improves multiple endothelial functions through targeting transforming growth factor-beta and SIRT-1 signaling. , 2014, Journal of the American College of Cardiology.

[112]  C. Fernández-Hernando,et al.  Noncoding RNAs and Atherosclerosis , 2014, Current Atherosclerosis Reports.

[113]  Michael Morse,et al.  Multiple knockout mouse models reveal lincRNAs are required for life and brain development , 2013, eLife.

[114]  T. Lehtimäki,et al.  MicroRNAs in the atherosclerotic plaque. , 2013, Clinical chemistry.

[115]  M. Lanaspa,et al.  Sugar, Uric Acid, and the Etiology of Diabetes and Obesity , 2013, Diabetes.

[116]  K. Moore,et al.  Macrophages in atherosclerosis: a dynamic balance , 2013, Nature Reviews Immunology.

[117]  Christine E. Becker,et al.  CD36 coordinates NLRP3 inflammasome activation by facilitating the intracellular nucleation from soluble to particulate ligands in sterile inflammation , 2013, Nature Immunology.

[118]  A. Gotto,et al.  Biological relevance of inflammation and oxidative stress in the pathogenesis of arterial diseases. , 2013, The American journal of pathology.

[119]  Joshua D. Hutcheson,et al.  MicroRNA in Cardiovascular Calcification: Focus on Targets and Extracellular Vesicle Delivery Mechanisms , 2013, Circulation research.

[120]  Michael K. Slevin,et al.  Circular RNAs are abundant, conserved, and associated with ALU repeats. , 2013, RNA.

[121]  L. Zentilin,et al.  Functional screening identifies miRNAs inducing cardiac regeneration , 2012, Nature.

[122]  Leyuan Xu,et al.  Cytosolic sulfotransferase 2B1b promotes hepatocyte proliferation gene expression in vivo and in vitro. , 2012, American journal of physiology. Gastrointestinal and liver physiology.

[123]  M. Hristov,et al.  microRNA expression signatures and parallels between monocyte subsets and atherosclerotic plaque in humans , 2012, Thrombosis and Haemostasis.

[124]  S. Juo,et al.  Negative feedback regulation between microRNA let-7g and the oxLDL receptor LOX-1 , 2011, Journal of Cell Science.

[125]  Jinfeng Liu,et al.  Non-canonical inflammasome activation targets caspase-11 , 2011, Nature.

[126]  Guangping Chen,et al.  Influenza A virus infection activates cholesterol sulfotransferase (SULT2B1b) in the lung of female C57BL/6 mice , 2011, Biological chemistry.

[127]  S. Xanthoulea,et al.  Myeloid IκBα Deficiency Promotes Atherogenesis by Enhancing Leukocyte Recruitment to the Plaques , 2011, PloS one.

[128]  P. Libby,et al.  Progress and challenges in translating the biology of atherosclerosis , 2011, Nature.

[129]  L. Yin,et al.  Sulfation of 25-hydroxycholesterol by SULT2B1b decreases cellular lipids via the LXR/SREBP-1c signaling pathway in human aortic endothelial cells. , 2011, Atherosclerosis.

[130]  K. Moore,et al.  NLRP3 inflamasomes are required for atherogenesis and activated by cholesterol crystals that form early in disease , 2010, Nature.

[131]  K. Moore,et al.  CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer , 2009, Nature Immunology.

[132]  J. Egido,et al.  Biomarkers in cardiovascular medicine. , 2009, Revista espanola de cardiologia.

[133]  E. Sontheimer,et al.  Origins and Mechanisms of miRNAs and siRNAs , 2009, Cell.

[134]  G. Kollias,et al.  Endothelial cell-specific NF-kappaB inhibition protects mice from atherosclerosis. , 2008, Cell metabolism.

[135]  S. Amar,et al.  Toll-Like Receptor-2 Mediates Diet and/or Pathogen Associated Atherosclerosis: Proteomic Findings , 2008, PloS one.

[136]  Y. Shiba,et al.  Critical Role of Bone Marrow Apoptosis-Associated Speck-Like Protein, an Inflammasome Adaptor Molecule, in Neointimal Formation After Vascular Injury in Mice , 2008, Circulation.

[137]  W. Kiosses,et al.  Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events , 2008, The Journal of experimental medicine.

[138]  E. Lai,et al.  The Mirtron Pathway Generates microRNA-Class Regulatory RNAs in Drosophila , 2007, Cell.

[139]  L. Havekes,et al.  Macrophage-specific inhibition of NF-κB activation reduces foam-cell formation , 2007 .

[140]  Yeon-Joo Kang,et al.  Regulation of intracellular cyclooxygenase levels by gene transcription and protein degradation. , 2007, Progress in lipid research.

[141]  V. Kim,et al.  The role of PACT in the RNA silencing pathway , 2006, The EMBO journal.

[142]  P. Tobias,et al.  Modulation of atherosclerosis in mice by Toll-like receptor 2. , 2005, The Journal of clinical investigation.

[143]  H. Kestler,et al.  NF-κB controls the global pro-inflammatory response in endothelial cells: evidence for the regulation of a pro-atherogenic program , 2005, Nucleic acids research.

[144]  K. Hirata,et al.  Enhanced expression of TLR4 in smooth muscle cells in human atherosclerotic coronary arteries , 2005, Heart and Vessels.

[145]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[146]  S. Akira,et al.  Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[147]  P. Ganz,et al.  Role of Endothelial Dysfunction in Atherosclerosis , 2004, Circulation.

[148]  N. Cheshire,et al.  Canonical pathway of nuclear factor kappa B activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[149]  K. Moore,et al.  Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways , 2004, Nature Medicine.

[150]  C. Monaco,et al.  Nuclear factor kappaB: a potential therapeutic target in atherosclerosis and thrombosis. , 2004, Cardiovascular research.

[151]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[152]  F. Martinon,et al.  The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. , 2002, Molecular cell.

[153]  G. Hansson,et al.  Expression of Toll-Like Receptors in Human Atherosclerotic Lesions: A Possible Pathway for Plaque Activation , 2002, Circulation.

[154]  M. Fishbein,et al.  Toll-Like Receptor-4 Is Expressed by Macrophages in Murine and Human Lipid-Rich Atherosclerotic Plaques and Upregulated by Oxidized LDL , 2001, Circulation.

[155]  C. Klaassen,et al.  The importance of 3‘‐phosphoadenosine 5‘‐phosphosulfate (PAPS) in the regulation of sulfation , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[156]  H. Towbin,et al.  Neutralization of interleukin-1 beta activity in vivo with a monoclonal antibody alleviates collagen-induced arthritis in DBA/1 mice and prevents the associated acute-phase response. , 1993, Clinical and experimental rheumatology.

[157]  C. Cocquerelle,et al.  Mis‐splicing yields circular RNA molecules , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[158]  A. Major,et al.  How Oxidized Low-Density Lipoprotein Activates Inflammatory Responses. , 2018, Critical reviews in immunology.

[159]  Jie Zeng,et al.  Effects of miR‑590 on oxLDL‑induced endothelial cell apoptosis: Roles of p53 and NF‑κB. , 2016, Molecular medicine reports.

[160]  Xi-Long Zheng,et al.  Nuclear Factor-κB Activation as a Pathological Mechanism of Lipid Metabolism and Atherosclerosis. , 2015, Advances in clinical chemistry.

[161]  Shao-Cong Sun,et al.  Non-canonical NF-κB signaling pathway , 2011, Cell Research.

[162]  F. Martinon,et al.  Inflammatory caspases and inflammasomes: master switches of inflammation , 2007, Cell Death and Differentiation.

[163]  S. Cohen,et al.  microRNA functions. , 2007, Annual review of cell and developmental biology.