A Linear Programming Approach to the Synthesis of Fixed-Structure Controllers

This paper describes a new approach to the synthesis of fixed-structure and fixed-order controllers. Such controllers are required in many practical applications. A broad class of fixed-structure controller synthesis problems can be reduced to the determination of a real controller parameter vector (or simply, a controller) <i>K</i>=(<i>k</i> <sub>1</sub>, <i>k</i> <sub>2</sub>, ... , <i>k</i> <sub>t</sub>), so that a given set of real or complex polynomials of the form <i>P</i>(<i>s</i>,<i>K</i>):=<i>Po</i>(<i>s</i>)+<i>k</i> <sub>1</sub> <i>P</i> <sub>1</sub>(<i>s</i>)+... +<i>k</i> <sub>t</sub> <i>P</i> <sub>t</sub>(<i>s</i>) is Hurwitz. The stability of the closed-loop system requires a real characteristic polynomial to be Hurwitz, while several performance criteria can be satisfied by ensuring that a family of complex polynomials is Hurwitz. A novel feature of this paper is the exploitation of the interlacing property (IP) of Hurwitz polynomials to construct arbitrarily tight approximations of the set of stabilizing controllers. This is done by systematically constructing sets of linear inequalities in <i>K</i>. The union of the feasible sets of linear inequalities provides an approximation of the set of all controllers <i>K</i>, which render <i>P</i>(<i>s</i>, <i>K</i>) Hurwitz. As the number of sets of linear inequalities increases and approaches infinity, we show that the union of the feasible sets <i>approaches</i> the set of <i>all</i> stabilizing controllers of the desired structure. The main tools that are used in the construction of the sets of linear inequalities are the Hermite-Biehler theorem, Descartes' rule of signs, and its generalization. We provide examples of the applicability of the proposed methodology to the synthesis of fixed-order stabilizing controllers.

[1]  Shankar P. Bhattacharyya,et al.  Structure and synthesis of PID controllers , 2000 .

[2]  K. Grigoriadis,et al.  Covariance control design for Hubble Space Telescope , 1995 .

[3]  S. Lindahl,et al.  A design scheme for incomplete state or output feedback with applications to boiler and power system control , 1974 .

[4]  Angelia P. Bukley,et al.  Hubble Space Telescope Pointing Control System Design Improvement Study Results , 1995 .

[5]  Robert E. Skelton,et al.  Output feedback controllers of suboptimality degree beta , 1990 .

[6]  B. Anderson,et al.  Output feedback stabilization and related problems-solution via decision methods , 1975 .

[7]  R. Skelton,et al.  The XY-centring algorithm for the dual LMI problem: a new approach to fixed-order control design , 1995 .

[8]  D. Bernstein,et al.  The optimal projection equations for model reduction and the relationships among the methods of Wilson, Skelton, and Moore , 1985 .

[9]  S. Hara,et al.  Fixed-structure robust controller synthesis based on sign definite condition by a special quantifier elimination , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[10]  Andrew Bartlett,et al.  Robust Control: Systems with Uncertain Physical Parameters , 1993 .

[11]  Shankar P. Bhattacharyya,et al.  A lower bound on the order of stabilizing controllers , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[12]  Karolos M. Grigoriadis,et al.  Low-order control design for LMI problems using alternating projection methods , 1996, Autom..

[13]  Goro Shirai,et al.  Decentralized Load Frequency Control Based on H∞ Control , 2000 .

[14]  David L. Pepyne,et al.  A new parameterization of stable polynomials , 2002, IEEE Trans. Autom. Control..

[15]  Shankar P. Bhattacharyya,et al.  PID Controllers for Time Delay Systems , 2004 .

[16]  D. Bernstein Some open problems in matrix theory arising in linear systems and control , 1992 .

[17]  Michael Sebek,et al.  Positive polynomials and robust stabilization with fixed-order controllers , 2003, IEEE Trans. Autom. Control..

[18]  P. Dorato,et al.  Static output feedback: a survey , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[19]  Dragoslav D. Šiljak,et al.  Nonlinear systems;: The parameter analysis and design , 1968 .

[20]  G. Pólya,et al.  Theory of functions, zeros, polynomials, determinants, number theory, geometry , 1977 .

[21]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[22]  Shankar P. Bhattacharyya,et al.  On the Synthesis of Fixed Structure Controllers Satisfying given Performance Criteria , 2004 .

[23]  R. G. Cochran,et al.  Output feedback stabilization by minimization of a spectral radius functional , 1978 .

[24]  Tetsuya Iwasaki,et al.  All controllers for the general H∞ control problem: LMI existence conditions and state space formulas , 1994, Autom..

[25]  Carlos E. de Souza,et al.  A necessary and sufficient condition for output feedback stabilizability , 1995, Autom..

[26]  R. Skelton,et al.  Parametrization of all stabilizing controllers via quadratic Lyapunov functions , 1995 .

[27]  P. Dorato,et al.  Quantified multivariate polynomial inequalities. The mathematics of practical control design problems , 2000 .

[28]  R. Skelton,et al.  LMI numerical solution for output feedback stabilization , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[29]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[30]  R. Skelton,et al.  Liapunov and Covariance Controllers , 1992, 1992 American Control Conference.

[31]  Daniel J. Stilwell,et al.  Communication, Feedback, and Decentralized Control , 2000 .

[32]  S. Choi,et al.  Pole placement in prescribed regions of the complex plane using output feedback , 1975 .

[33]  J. Rosenthal,et al.  Output feedback pole placement with dynamic compensators , 1996, IEEE Trans. Autom. Control..

[34]  A. T. Neto,et al.  Stabilization via static output feedback , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[35]  D. Bernstein,et al.  The optimal projection equations for fixed-order dynamic compensation , 1984 .

[36]  Daniel J. Stilwell,et al.  Communication, Feedback and Decentralized Control for Platoons of Underwater Vehicles , 2000 .

[37]  S. P. Bhattachyaryya,et al.  Stabilizability conditions using linear programming , 1988 .

[38]  L. Ghaoui,et al.  A cone complementarity linearization algorithm for static output-feedback and related problems , 1996, Proceedings of Joint Conference on Control Applications Intelligent Control and Computer Aided Control System Design.

[39]  Mato Baotic,et al.  Multi-Parametric Toolbox (MPT) , 2004, HSCC.

[40]  Shankar P. Bhattacharyya,et al.  Stabilization of discrete-time systems by first-order controllers , 2003, IEEE Trans. Autom. Control..

[41]  Dragoslav D. Šiljak,et al.  Validation of reduced-order models for control systems design , 1982 .

[42]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1994 .

[43]  Vincent D. Blondel,et al.  Survey on the State of Systems and Control , 1995, Eur. J. Control.

[44]  Edward J. Davison,et al.  A note on pole assignment in linear systems with incomplete state feedback , 1970 .

[45]  Daniel J. Stilwell,et al.  Platoons of underwater vehicles , 2000 .