Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays.

Small aluminum nanoparticles have the potential to exhibit localized surface plasmon resonances in the deep ultraviolet region of the electromagnetic spectrum, however technical and scientific challenges make it difficult to attain this limit. We report the fabrication of arrays of Al/Al2O3 core/shell nanoparticles with a metallic-core diameter between 12 and 25 nm that display sharp plasmonic resonances at very high energies, up to 5.8 eV (down to λ = 215 nm). The arrays were fabricated by means of a straightforward self-organization approach. The experimental spectra were compared with theoretical calculations that allow the correlation of each feature to the corresponding plasmon modes.

[1]  A. Sugawara,et al.  Surface morphology of epitaxial LiF(110) and CaF2(110) layers , 2005 .

[2]  P. Mulvaney,et al.  Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer. , 2011, Nano letters.

[3]  H. Dai,et al.  Determination of adsorption geometry on spherical particles from nonlinear Mie theory analysis of surface second harmonic generation , 2011 .

[4]  Y. Akimov,et al.  Design of Plasmonic Nanoparticles for Efficient Subwavelength Light Trapping in Thin-Film Solar Cells , 2011 .

[5]  G. Schatz,et al.  Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles , 2008 .

[6]  Q. Gong,et al.  Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures. , 2012, ACS nano.

[7]  El Sayed SOME INTERESTING PROPERTIES OF METALS CONFINED IN TIME AND NANOMETER SPACE OF DIFFERENT SHAPES , 2001 .

[8]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[9]  Javier Aizpurua,et al.  Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. , 2008, ACS nano.

[10]  A. Henglein,et al.  Radiolytic Formation of Colloidal Tin and Tin-Gold Particles in Aqueous Solution , 1994 .

[11]  Bruce T. Draine,et al.  Beyond Clausius-Mossotti - Wave propagation on a polarizable point lattice and the discrete dipole approximation. [electromagnetic scattering and absorption by interstellar grains] , 1992 .

[12]  Yasin Ekinci,et al.  Magnetic metamaterials in the blue range using aluminum nanostructures. , 2009, Optics letters.

[13]  George C. Schatz,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[14]  Pae C. Wu,et al.  Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate. , 2011, Nano letters.

[15]  Joseph M. McLellan,et al.  Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions. , 2005, Nano letters.

[16]  Taizo Sasaki,et al.  Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: Applications to aluminum , 1980 .

[17]  H. Solak,et al.  Plasmon resonances of aluminum nanoparticles and nanorods , 2008 .

[18]  H. Atwater,et al.  Modeling light trapping in nanostructured solar cells. , 2011, ACS Nano.

[19]  X. Jiao,et al.  Polarization Multiplexed Optical Bullseye Antennas , 2012, Plasmonics.

[20]  H. Zeng,et al.  Deep-Ultraviolet–Blue-Light Surface Plasmon Resonance of Al and Alcore/Al2O3shell in Spherical and Cylindrical Nanostructures , 2012 .

[21]  E. Purcell,et al.  Scattering and Absorption of Light by Nonspherical Dielectric Grains , 1973 .

[22]  M. Canepa,et al.  Flexible Tuning of Shape and Arrangement of Au Nanoparticles in 2-Dimensional Self-Organized Arrays: Morphology and Plasmonic Response , 2011 .

[23]  F. Tichelaar,et al.  Determination of total primary zero loss intensities in measured electron emission spectra of bare and oxidised metals: Application to aluminium oxide films on aluminium substrates , 2000 .

[24]  B. Doyle,et al.  The BEAR Beamline at Elettra , 2004 .

[25]  S. Blair,et al.  Nanoaperture Fluorescence Enhancement in the Ultraviolet , 2010 .

[26]  P. Stadelmann,et al.  EELS investigation of plasmon excitations in aluminum nanospheres and carbon nanotubes , 1997 .

[27]  T. Weiland A discretization model for the solution of Maxwell's equations for six-component fields , 1977 .

[28]  Bene Poelsema,et al.  Shape and size effects in the optical properties of metallic nanorods. , 2006, Physical chemistry chemical physics : PCCP.

[29]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[30]  Mark W. Knight,et al.  Aluminum plasmonic nanoantennas. , 2012, Nano letters.

[31]  Gan Wei,et al.  The Effect of Composition, Morphology, and Susceptibility on Nonlinear Light Scattering from Metallic and Dielectric Nanoparticles , 2012 .

[32]  B. Draine,et al.  User Guide for the Discrete Dipole Approximation Code DDSCAT 7.2 , 2003, 1002.1505.

[33]  S. Bonetti,et al.  Designer Magnetoplasmonics with Nickel Nanoferromagnets , 2011, Nano letters.

[34]  Costas Fotakis,et al.  Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses. , 2009, Optics express.

[35]  G. Schatz,et al.  An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium , 1987 .

[36]  S. Kawata,et al.  Tailoring plasmon resonances in the deep-ultraviolet by size-tunable fabrication of aluminum nanostructures , 2012 .

[37]  B. Draine,et al.  Discrete-dipole approximation for periodic targets: theory and tests. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[38]  Christoph Langhammer,et al.  Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms. , 2011, ACS nano.

[39]  U. Kreibig,et al.  OPTICAL ABSORPTION OF SMALL METALLIC PARTICLES , 1985 .

[40]  S. Kawata,et al.  Deep-UV tip-enhanced Raman scattering , 2009 .

[41]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[42]  Zhe Yuan,et al.  Plasmonic properties of supported Pt and Pd nanostructures. , 2006, Nano letters.

[43]  H. Ehrenreich,et al.  Optical Properties of Aluminum , 1963 .

[44]  Giampiero Naletto,et al.  BEAR: a bending magnet for emission absorption and reflectivity , 2007 .

[45]  S. Link,et al.  Toward plasmonic polymers. , 2012, Nano letters.

[46]  B. Poelsema,et al.  Localized Plasmons in Noble Metal Nanospheroids , 2011 .

[47]  Y. Ekinci,et al.  Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays. , 2012, Journal of the American Chemical Society.

[48]  A. Sugawara,et al.  Optical second-harmonic spectroscopy of Au nanowires , 2004 .

[49]  Igor Zorić,et al.  Localized surface plasmon resonances in aluminum nanodisks. , 2008, Nano letters.

[50]  Simon Rivier,et al.  Enhanced second-harmonic generation from double resonant plasmonic antennae. , 2012, Optics express.

[51]  Michael J. Ford,et al.  Plasmonic Resonances of Closely Coupled Gold Nanosphere Chains , 2009 .

[52]  P. Batson Surface Plasmon Coupling in Clusters of Small Spheres , 1982 .

[53]  Lundgren,et al.  Observation of a low-binding-energy peak in the 2p core-level photoemission from oxidized Al(111). , 1993, Physical review. B, Condensed matter.

[54]  E. Anno,et al.  Size-dependent change in parallel band absorption of Al particles , 2001 .

[55]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[56]  Vladimir Kochergin,et al.  Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices , 2011 .

[57]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[58]  A M Glass,et al.  Optical absorption of small metal particles with adsorbed dye coats. , 1981, Optics letters.

[59]  Heting Li,et al.  Formation and properties of stabilized aluminum nanoparticles. , 2009, ACS applied materials & interfaces.

[60]  Bruce T. Draine,et al.  The discrete-dipole approximation and its application to interstellar graphite grains , 1988 .

[61]  Charles R. Martin,et al.  Fabrication, characterization and optical theory of aluminum nanometal/nanoporous membrane thin film composites , 1995 .

[62]  N. Cabrera,et al.  Theory of the oxidation of metals , 1949 .

[63]  Giampiero Naletto,et al.  Monochromator for the synchrotron radiation beamline X-MOSS at ELETTRA , 2001, SPIE Optics + Photonics.

[64]  Riccardo Sapienza,et al.  Aluminum for nonlinear plasmonics: Resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas , 2012, CLEO 2012.

[65]  C. Noguez Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment , 2007 .

[66]  S. Roke,et al.  Nonlinear light scattering and spectroscopy of particles and droplets in liquids. , 2012, Annual review of physical chemistry.

[67]  Michael J. Ford,et al.  Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver , 2009 .

[68]  Peter Nordlander,et al.  Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. , 2009, Nano letters.

[69]  Younan Xia,et al.  Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process. , 2005, Nano letters.