Fungal Bioconversion of Lignocellulosic Residues; Opportunities & Perspectives

The development of alternative energy technology is critically important because of the rising prices of crude oil, security issues regarding the oil supply, and environmental issues such as global warming and air pollution. Bioconversion of biomass has significant advantages over other alternative energy strategies because biomass is the most abundant and also the most renewable biomaterial on our planet. Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi and bacteria which are capable of degrading lignocellulolytic materials. Fungi such as Trichoderma reesei and Aspergillus niger produce large amounts of extracellular cellulolytic enzymes, whereas bacterial and a few anaerobic fungal strains mostly produce cellulolytic enzymes in a complex called cellulosome, which is associated with the cell wall. In filamentous fungi, cellulolytic enzymes including endoglucanases, cellobiohydrolases (exoglucanases) and β-glucosidases work efficiently on cellulolytic residues in a synergistic manner. In addition to cellulolytic/hemicellulolytic activities, higher fungi such as basidiomycetes (e.g. Phanerochaete chrysosporium) have unique oxidative systems which together with ligninolytic enzymes are responsible for lignocellulose degradation. This review gives an overview of different fungal lignocellulolytic enzymatic systems including extracellular and cellulosome-associated in aerobic and anaerobic fungi, respectively. In addition, oxidative lignocellulose-degradation mechanisms of higher fungi are discussed. Moreover, this paper reviews the current status of the technology for bioconversion of biomass by fungi, with focus on mutagenesis, co-culturing and heterologous gene expression attempts to improve fungal lignocellulolytic activities to create robust fungal strains.

[1]  F. Guillén,et al.  Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. , 1992, European journal of biochemistry.

[2]  R. Morcuende,et al.  Future CO2 concentrations, though not warmer temperatures, enhance wheat photosynthesis temperature responses. , 2007, Physiologia plantarum.

[3]  J. Ståhlberg,et al.  Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes. , 2005, Progress in biophysics and molecular biology.

[4]  Leif J. Jönsson,et al.  Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae , 2000, Applied biochemistry and biotechnology.

[5]  Pernilla Turner,et al.  Potential and utilization of thermophiles and thermostable enzymes in biorefining , 2007, Microbial cell factories.

[6]  R. Maheshwari,et al.  Thermophilic Fungi: Their Physiology and Enzymes , 2000, Microbiology and Molecular Biology Reviews.

[7]  W. Steiner,et al.  Simultaneous production of high activities of thermostable endoglucanase and β-glucosidase by the wild thermophilic fungus Thermoascus aurantiacus , 2000, Applied Microbiology and Biotechnology.

[8]  M. Gold,et al.  Purification and Characterization of a 1,4-Benzoquinone Reductase from the Basidiomycete Phanerochaete chrysosporium , 1995, Applied and environmental microbiology.

[9]  M. Galbe,et al.  Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. , 2006, Journal of biotechnology.

[10]  E. Bayer,et al.  The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. , 2004, Annual review of microbiology.

[11]  P. Gao,et al.  Function of the iron-binding chelator produced by Coriolus versicolor in lignin biodegradation , 2008, Science in China Series C: Life Sciences.

[12]  R. Doi Cellulases of Mesophilic Microorganisms , 2008, Annals of the New York Academy of Sciences.

[13]  E Setter,et al.  Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum , 1983, Journal of bacteriology.

[14]  S. Usha,et al.  Cellobiose-oxidizing enzymes from the lignocellulose-degrading basidiomycete Phanerochaete chrysosporium: interaction with microcrystalline cellulose , 1990, Applied Microbiology and Biotechnology.

[15]  J. Knowles,et al.  Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. , 1990, Science.

[16]  K. Réczey,et al.  Production of β-glucosidase in mixed culture of Aspergillus niger BKMF 1305 and Trichoderma reesei RUT C30 , 2003 .

[17]  D. S. Arora,et al.  Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw , 2002 .

[18]  Jie Hao,et al.  Involvement of Lignocellulolytic Enzymes in the Decomposition of Leaf Litter in a Subtropical Forest , 2006, The Journal of eukaryotic microbiology.

[19]  H. Schiffer,et al.  WEC energy policy scenarios to 2050 , 2008 .

[20]  M. Gilbert,et al.  A comparison of two xylanases from the thermophilic fungi Thielavia terrestris and Thermoascus crustaceus , 1993, Applied Microbiology and Biotechnology.

[21]  S. Polasky,et al.  Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[22]  B. Dale,et al.  Global potential bioethanol production from wasted crops and crop residues , 2004 .

[23]  M. Himmel,et al.  Optimumβ-D-glucosidase supplementation of cellulase for efficient conversion of cellulose to glucose , 2005, Biotechnology Letters.

[24]  Kenta Matsumura,et al.  Characterization of a hydroxyl-radical-producing glycoprotein and its presumptive genes from the white-rot basidiomycete Phanerochaete chrysosporium. , 2007, Journal of biotechnology.

[25]  Datta Madamwar,et al.  Solid State Fermentation of Lignocellulosic Waste for Cellulase and β‐Glucosidase Production by Cocultivation ofAspergillus ellipticusand Aspergillus fumigatus , 1997 .

[26]  S. W. Kim,et al.  Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs , 2002, Applied Microbiology and Biotechnology.

[27]  Carmen Sánchez,et al.  Lignocellulosic residues: biodegradation and bioconversion by fungi. , 2009, Biotechnology advances.

[28]  T. A. Jones,et al.  High-resolution crystal structures reveal how a cellulose chain is bound in the 50 A long tunnel of cellobiohydrolase I from Trichoderma reesei. , 1998, Journal of molecular biology.

[29]  Weiguo Cao,et al.  Purification and some properties of β-glucosidase from the ectomycorrhizal fungus Pisolithus tinctorius strain SMF , 1993 .

[30]  M. Galbe,et al.  Trichoderma atroviride mutants with enhanced production of cellulase and β-glucosidase on pretreated willow , 2008 .

[31]  Xu Li,et al.  Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. , 2008, Current opinion in biotechnology.

[32]  David K. Johnson,et al.  Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production , 2007, Science.

[33]  A. Varma,et al.  Paper mill sludge as a potential source for cellulase production by Trichoderma reesei QM 9123 and Aspergillus niger using mixed cultivation , 1994 .

[34]  M. Himmel,et al.  Outlook for cellulase improvement: screening and selection strategies. , 2006, Biotechnology advances.

[35]  T Viraraghavan,et al.  Municipal solid waste management in Nepal: practices and challenges. , 2005, Waste management.

[36]  M. Galbe,et al.  Effect of substrate and cellulase concentration on simultaneous saccharification and fermentation of steam-pretreated softwood for ethanol production. , 2000, Biotechnology and bioengineering.

[37]  C. Wyman,et al.  Features of promising technologies for pretreatment of lignocellulosic biomass. , 2005, Bioresource technology.

[38]  B Henrissat,et al.  A classification of glycosyl hydrolases based on amino acid sequence similarities. , 1991, The Biochemical journal.

[39]  Studies on mixed fungal culture for cellulase and hemi-cellulase production part-1: Optimization of medium for the mixed culture ofTrichoderma reesei D1-6 andAspergillus Pt 2804 , 1983, Biotechnology Letters.

[40]  D. Eveleigh,et al.  Preparation of mutants of Trichoderma reesei with enhanced cellulase production , 1977, Applied and environmental microbiology.

[41]  Leif J Jönsson,et al.  Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. , 2007, Bioresource technology.

[42]  B. Saha Alpha-L-arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. , 2000, Biotechnology advances.

[43]  Yeong-Suk Kim,et al.  The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose. , 2007, Journal of microbiology and biotechnology.

[44]  F. Huang,et al.  Lignin degradation by a novel peptide, Gt factor, from brown rot fungus Gloeophyllum trabeum , 2006, Biotechnology journal.

[45]  C. Cameselle,et al.  Enhanced ligninolytic enzyme production and degrading capability of Phanerochaete chrysosporium and Trametes versicolor , 2003 .

[46]  P. Baldrian,et al.  Degradation of cellulose by basidiomycetous fungi. , 2008, FEMS microbiology reviews.

[47]  A. Enoki,et al.  Extracellular substance from the brown-rot basidiomycete Gloeophyllum trabeum that produces and reduces hydrogen peroxide , 1993 .

[48]  T. Lundell,et al.  Oxalate decarboxylase of the white-rot fungus Dichomitus squalens demonstrates a novel enzyme primary structure and non-induced expression on wood and in liquid cultures. , 2009, Microbiology.

[49]  S. Itakura,et al.  Hydroxyl Radical Generation by an Extracellular Low-Molecular-Weight Substance and Phenol Oxidase Activity During Wood Degradation by the White-Rot Basidiomycete Phanerochaete chrysosporium , 1999 .

[50]  D. Davies,et al.  Diversity of anaerobic fungal populations in cattle revealed by selective enrichment culture using different carbon sources , 2009 .

[51]  M. Galbe,et al.  A review of the production of ethanol from softwood , 2002, Applied Microbiology and Biotechnology.

[52]  L. Ljungdahl,et al.  The Cellulase/Hemicellulase System of the Anaerobic FungusOrpinomycesPC‐2 and Aspects of Its Applied Use , 2008, Annals of the New York Academy of Sciences.

[53]  D. S. Chahal Solid-State Fermentation with Trichoderma reesei for Cellulase Production , 1985, Applied and environmental microbiology.

[54]  Y. Morikawa,et al.  Application of Trichoderma reesei Cellulase and Xylanase Promoters through Homologous Recombination for Enhanced Production of Extracellular β-Glucosidase I , 2009, Bioscience, biotechnology, and biochemistry.

[55]  Nagiza F. Samatova,et al.  Impact of Pretreated Switchgrass and Biomass Carbohydrates on Clostridium thermocellum ATCC 27405 Cellulosome Composition: A Quantitative Proteomic Analysis , 2009, PloS one.

[56]  L. Ingram,et al.  Synergistic Hydrolysis of Carboxymethyl Cellulose and Acid-Swollen Cellulose by Two Endoglucanases (CelZ and CelY) fromErwinia chrysanthemi , 2000, Journal of bacteriology.

[57]  Two genes of the anaerobic fungus Orpinomyces sp. strain PC-2 encoding cellulases with endoglucanase activities may have arisen by gene duplication. , 1998, FEMS microbiology letters.

[58]  K. Johnson Exocellular β-mannanases from hemicellulolytic fungi , 1990, World journal of microbiology & biotechnology.

[59]  Joel S. Levine,et al.  Biomass burning and global change , 2008 .

[60]  T. V. Bubnova,et al.  The selection and properties of Penicillium verruculosum mutants with enhanced production of cellulases and xylanases , 2005, Microbiology.

[61]  O. Turunen,et al.  A de novo designed N-terminal disulphide bridge stabilizes the Trichoderma reesei endo-1,4-beta-xylanase II. , 2004, Journal of biotechnology.

[62]  B. Saha,et al.  Hemicellulose bioconversion , 2003, Journal of Industrial Microbiology and Biotechnology.

[63]  W. Anderson,et al.  Structural and chemical properties of grass lignocelluloses related to conversion for biofuels , 2008, Journal of Industrial Microbiology & Biotechnology.

[64]  R. Maleszka,et al.  Conversion of D-xylose into ethanol by the yeast Pachysolen tannophilus , 1981, Biotechnology Letters.

[65]  Edward M. Rubin,et al.  Genomics of cellulosic biofuels , 2008, Nature.

[66]  C. Evans Properties of the β-d-glucosidase (cellobiase) from the wood-rotting fungus, Coriolus versicolor , 1985, Applied Microbiology and Biotechnology.

[67]  Y. Qu,et al.  Engineering endoglucanase II from Trichoderma reesei to improve the catalytic efficiency at a higher pH optimum. , 2008, Journal of biotechnology.

[68]  H. Gilbert,et al.  Characterization of a double dockerin from the cellulosome of the anaerobic fungus Piromyces equi. , 2007, Journal of molecular biology.

[69]  Thomas M. Wood,et al.  The anaerobic fungus Neocallimastix frontalis: isolation and properties of a cellulosome-type enzyme fraction with the capacity to solubilize hydrogen-bond-ordered cellulose , 1992, Applied Microbiology and Biotechnology.

[70]  J. Mcmillan,et al.  Arabinose utilization by xylose-fermenting yeasts and fungi , 1994, Applied biochemistry and biotechnology.

[71]  Mark Laser,et al.  Fractionating recalcitrant lignocellulose at modest reaction conditions. , 2007, Biotechnology and bioengineering.

[72]  Hung Lee,et al.  Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. , 2007, Biotechnology advances.

[73]  S. Withers,et al.  Cloning, Expression, Characterization, and Nucleophile Identification of Family 3, Aspergillus nigerβ-Glucosidase* , 2000, The Journal of Biological Chemistry.

[74]  José C del Río,et al.  Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. , 2005, International microbiology : the official journal of the Spanish Society for Microbiology.

[75]  D. Haltrich,et al.  Purification and Characterization of Cellobiose Dehydrogenase from the Plant Pathogen Sclerotium(Athelia) rolfsii , 2001, Applied and Environmental Microbiology.

[76]  Bärbel Hahn-Hägerdal,et al.  Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification , 2000 .

[77]  C. Wyman,et al.  Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process , 1993, Biotechnology and bioengineering.

[78]  Liisa Viikari,et al.  Thermostable enzymes in lignocellulose hydrolysis. , 2007, Advances in biochemical engineering/biotechnology.

[79]  E. Forgács,et al.  Liquid chromatographic and electrophoretic characterisation of extracellular beta-glucosidase of Pleurotus ostreatus grown in organic waste. , 2002, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[80]  C. Houtman,et al.  Fungal hydroquinones contribute to brown rot of wood. , 2006, Environmental microbiology.

[81]  Y. Elad,et al.  Biological control effects of a new isolate of Trichoderma harzianum on Pythium aphanidermatum , 1984 .

[82]  L. Gorton,et al.  Limits for alkaline detoxification of dilute-acid lignocellulose hydrolysates , 2003, Applied biochemistry and biotechnology.

[83]  Y. Shoham,et al.  Microbial hemicellulases. , 2003, Current opinion in microbiology.

[84]  H. Call,et al.  History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym-process) , 1997 .

[85]  D. Davies,et al.  Cyllamyces aberensis gen. nov, sp. nov.: a new anaerobic gut fungus with branched sporangiophores isolated from cattle , 2001 .

[86]  É. Grenet,et al.  Degradation of maize stem by two rumen fungal species, Piromyces communis and Caecomyces communis, in pure cultures or in association with cellulolytic bacteria. , 1992, Reproduction, nutrition, development.

[87]  R B Freedman,et al.  Cellulases and hemicellulases of the anaerobic fungus Piromyces constitute a multiprotein cellulose-binding complex and are encoded by multigene families. , 1995, FEMS microbiology letters.

[88]  M. Paloheimo,et al.  Enhanced production of cellobiohydrolases in Trichoderma reesei and evaluation of the new preparations in biofinishing of cotton. , 2005, Journal of biotechnology.

[89]  F. Fenel,et al.  Increased alkali stability in Trichoderma reesei endo-1, 4-beta-xylanase II by site directed mutagenesis. , 2006, Journal of biotechnology.

[90]  A. Fakhru’l-Razi,et al.  Use of fungi for the bioconversion of rice straw into cellulase enzyme , 2007, Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes.

[91]  Markku Saloheimo,et al.  Expression in Trichoderma reesei and characterisation of a thermostable family 3 beta-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. , 2004, Protein expression and purification.

[92]  A. Meyer,et al.  Efficiency of New Fungal Cellulase Systems in Boosting Enzymatic Degradation of Barley Straw Lignocellulose , 2006, Biotechnology progress.

[93]  L. Lynd,et al.  Consolidated bioprocessing of cellulosic biomass: an update. , 2005, Current opinion in biotechnology.

[94]  T. Houfek,et al.  Transcriptional Regulation of Biomass-degrading Enzymes in the Filamentous Fungus Trichoderma reesei* , 2003, Journal of Biological Chemistry.

[95]  G. Pettersson,et al.  A critical review of cellobiose dehydrogenases. , 2000, Journal of biotechnology.

[96]  E. Boles,et al.  Microbial Cell Factories Co-utilization of L-arabinose and D-xylose by Laboratory and Industrial Saccharomyces Cerevisiae Strains , 2022 .

[97]  Zhijun Zhang,et al.  Production of laccase by a newly isolated deuteromycete fungus Pestalotiopsis sp. and its decolorization of azo dye , 2007, Journal of Industrial Microbiology & Biotechnology.

[98]  D. Eveleigh,et al.  SELECTIVE SCREENING METHODS FOR THE ISOLATION OF HIGH YIELDING CELLULASE MUTANTS OF TRICHODERMA REESEI , 1979 .

[99]  Lukas Hartl,et al.  The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding) region of the wild-type genome , 2008, BMC Genomics.

[100]  Pascale Champagne,et al.  Feasibility of producing bio-ethanol from waste residues: A Canadian perspective: Feasibility of producing bio-ethanol from waste residues in Canada , 2007 .

[101]  A. Törrönen,et al.  Glucose-induced secretion of Trichoderma reesei xylanases , 1996, Applied and environmental microbiology.

[102]  T. Reinikainen,et al.  The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. , 1994, Science.

[103]  C. Orpin,et al.  Studies on the rumen flagellate Neocallimastix frontalis. , 1975, Journal of general microbiology.

[104]  B Henrissat,et al.  Glycoside hydrolases and glycosyltransferases: families and functional modules. , 2001, Current opinion in structural biology.

[105]  G. Prensier,et al.  Glycoside and Polysaccharide Hydrolase Activity of the Rumen Anaerobic Fungus Caecomyces communis (Sphaeromonas communis SENSU ORPIN) at Early and Final Stages of the Developmental Cycle , 1996, Current Microbiology.

[106]  J. Ha,et al.  The effects of sequential inoculation of mixed rumen protozoa on the degradation of orchard grass cell walls by anaerobic fungus Anaeromyces mucronatus 543. , 2001, Canadian journal of microbiology.

[107]  W. Liao,et al.  Hydrolysis of animal manure lignocellulosics for reducing sugar production. , 2004, Bioresource technology.

[108]  A. Ferraz,et al.  Wood biodegradation and enzyme production by Ceriporiopsis subvermispora during solid-state fermentation of Eucalyptus grandis , 2003 .

[109]  G. Vogels,et al.  The role of the cellulolytic high molecular mass (HMM) complex of the anaerobic fungus Piromyces sp. strain E2 in the hydrolysis of microcrystalline cellulose , 1997, Archives of Microbiology.

[110]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[111]  C. Kubicek Release of carboxymethyl-cellulase and β-glucosidase from cell walls of Trichoderma reesei , 1981, European journal of applied microbiology and biotechnology.

[112]  R. Steneck,et al.  Coral Reefs Under Rapid Climate Change and Ocean Acidification , 2007, Science.

[113]  R. Tengerdy,et al.  Mixed culture solid substrate fermentation for cellulolytic enzyme production , 1994, Biotechnology Letters.

[114]  B. Goodell,et al.  Physical and chemical characteristics of glycopeptide from wood decay fungi. , 2003 .

[115]  R. Maheshwari,et al.  Sporotrichum thermophile Growth, Cellulose Degradation, and Cellulase Activity , 1987, Applied and environmental microbiology.

[116]  P. Vermette,et al.  Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor , 2008 .

[117]  Ratna R. Sharma-Shivappa,et al.  Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. , 2008, Bioresource technology.

[118]  Rl Howard,et al.  Lignocellulose biotechnology: issues of bioconversion and enzyme production , 2003 .

[119]  I. S. Pretorius,et al.  Microbial Cellulose Utilization: Fundamentals and Biotechnology , 2002, Microbiology and Molecular Biology Reviews.

[120]  X. Li,et al.  Fractionation of cellulases from the ruminal fungus Neocallimastix frontalis EB188 , 1991, Applied and environmental microbiology.

[121]  D. Cooper,et al.  Cellulase and beta-glucosidase production by mexied culture of trichoderma reesei rut C30 and aspergillus phoenicis , 1985, Biotechnology Letters.

[122]  E. Bayer,et al.  Cellulose, cellulases and cellulosomes. , 1998, Current opinion in structural biology.

[123]  Alice Grassick,et al.  Three-dimensional structure of a thermostable native cellobiohydrolase, CBH IB, and molecular characterization of the cel7 gene from the filamentous fungus, Talaromyces emersonii. , 2004, European journal of biochemistry.

[124]  Hiroshi Abe,et al.  Identification, cloning, and characterization of a Sporobolomyces singularis beta-galactosidase-like enzyme involved in galacto-oligosaccharide production. , 2005, Journal of bioscience and bioengineering.

[125]  M. Tien,et al.  Fungal degradation of wood: initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate , 2004, Current Genetics.

[126]  M. Mandels,et al.  The Production of Cellulases , 1969 .

[127]  M. Galbe,et al.  Bio-ethanol--the fuel of tomorrow from the residues of today. , 2006, Trends in biotechnology.

[128]  K. Mori,et al.  Identification of active site carboxylic residues in Trichoderma reesei endoglucanase Cel12A by site-directed mutagenesis , 2000 .

[129]  R. Tengerdy,et al.  Cellulase production by mixed fungi in solid-substrate fermentation of bagasse , 1995, World journal of microbiology & biotechnology.

[130]  O. Singh,et al.  Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives , 2008, Journal of Industrial Microbiology & Biotechnology.

[131]  M. Taherzadeh,et al.  Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review , 2008, International journal of molecular sciences.

[132]  P. Gao,et al.  Function of a low molecular peptide generated by cellulolytic fungi for the degradation of native cellulose , 2004, Biotechnology Letters.

[133]  M. Mandels,et al.  Enhanced cellulase production by a mutant of Trichoderma viride. , 1971, Applied microbiology.

[134]  Xiaoru Hou,et al.  Enzymatic Hydrolysis and Ethanol Fermentation of High Dry Matter Wet-Exploded Wheat Straw at Low Enzyme Loading , 2008, Applied biochemistry and biotechnology.

[135]  J. Buswell,et al.  Production and Distribution of Endoglucanase, Cellobiohydrolase, and β-Glucosidase Components of the Cellulolytic System of Volvariella volvacea, the Edible Straw Mushroom , 1999, Applied and Environmental Microbiology.

[136]  K. Messner,et al.  Penetrability of White Rot-Degraded Pine Wood by the Lignin Peroxidase of Phanerochaete chrysosporium , 1988, Applied and environmental microbiology.

[137]  X Yu,et al.  J.Chromatogr., B: Anal. Technol. Biomed. Life Sci. , 2004 .

[138]  E. Chuvieco,et al.  Biomass Burning Emissions: A Review of Models Using Remote-Sensing Data , 2005, Environmental monitoring and assessment.

[139]  Shiva Habibi,et al.  Environmental implications of municipal solid waste-derived ethanol. , 2007, Environmental science & technology.