The Role of Eosinophils in Bullous Pemphigoid: A Developing Model of Eosinophil Pathogenicity in Mucocutaneous Disease

Bullous pemphigoid (BP) is an autoimmune blistering disease which carries a significant mortality and morbidity. While historically BP has been characterized as an IgG driven disease mediated by anti-BP180 and BP230 IgG autoantibodies, developments in recent years have further elucidated the role of eosinophils and IgE autoantibodies. In fact, eosinophil infiltration and eosinophilic spongiosis are prominent features in BP. Several observations support a pathogenic role of eosinophils in BP: IL-5, eotaxin, and eosinophil-colony stimulating factor are present in blister fluid; eosinophils line the dermo-epidermal junction (DEJ) in the presence of BP serum, metalloprotease-9 is released by eosinophils at the site of blisters; eosinophil degranulation proteins are found on the affected basement membrane zone as well as in serum corresponding with clinical disease; eosinophil extracellular DNA traps directed against the basement membrane zone are present, IL-5 activated eosinophils cause separation of the DEJ in the presence of BP serum; and eosinophils are the necessary cell required to drive anti-BP180 IgE mediated skin blistering. Still, it is likely that eosinophils contribute to the pathogenesis of BP in numerous other ways that have yet to be explored based on the known biology of eosinophils. We herein will review the role of eosinophils in BP and provide a framework for understanding eosinophil pathogenic mechanisms in mucocutaneous disease.

[1]  C. Hammers Faculty Opinions recommendation of IgE autoreactivity in bullous pemphigoid: eosinophils and mast cells as major targets of pathogenic immune reactants. , 2020, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[2]  anonymous,et al.  Comprehensive review , 2019 .

[3]  E. Papakonstantinou,et al.  Eosinophils are a Major Source of Interleukin-31 in Bullous Pemphigoid. , 2018, Acta dermato-venereologica.

[4]  K. Kridin Peripheral eosinophilia in bullous pemphigoid: prevalence and influence on the clinical manifestation , 2018, The British journal of dermatology.

[5]  L. Geskin,et al.  A review of bullous pemphigoid associated with PD‐1 and PD‐L1 inhibitors , 2018, International journal of dermatology.

[6]  H. Shimizu,et al.  Intravenous IgG Reduces Pathogenic Autoantibodies, Serum IL-6 Levels, and Disease Severity in Experimental Bullous Pemphigoid Models. , 2018, The Journal of investigative dermatology.

[7]  Kalmia M. Smith,et al.  Resident intestinal eosinophils constitutively express antigen presentation markers and include two phenotypically distinct subsets of eosinophils , 2018, Immunology.

[8]  H. Shimizu,et al.  Unique clinical and serological features of bullous pemphigoid associated with dipeptidyl peptidase‐4 inhibitors , 2018, The British journal of dermatology.

[9]  Paul E. Miller,et al.  New mechanism underlying IL‐31–induced atopic dermatitis , 2018, The Journal of allergy and clinical immunology.

[10]  Y. Tada,et al.  Decrease in eosinophils infiltrating into the skin of patients with dipeptidyl peptidase‐4 inhibitor‐related bullous pemphigoid , 2018, The Journal of dermatology.

[11]  S. Nakae,et al.  IL-31 is crucial for induction of pruritus, but not inflammation, in contact hypersensitivity , 2018, Scientific Reports.

[12]  K. Amber,et al.  Localized pretibial bullous pemphigoid arising in a patient on pembrolizumab for metastatic melanoma , 2018, Journal der Deutschen Dermatologischen Gesellschaft = Journal of the German Society of Dermatology : JDDG.

[13]  K. Kridin Subepidermal autoimmune bullous diseases: overview, epidemiology, and associations , 2018, Immunologic research.

[14]  James J. Lee,et al.  Eosinophils Mediate Tissue Injury in the Autoimmune Skin Disease Bullous Pemphigoid. , 2017, The Journal of investigative dermatology.

[15]  P. Berbis,et al.  Dipeptidyl peptidase IV inhibitors, a risk factor for bullous pemphigoid: Retrospective multicenter case‐control study from France and Switzerland , 2017, Journal of the American Academy of Dermatology.

[16]  K. Amber,et al.  Autoimmune Subepidermal Bullous Diseases of the Skin and Mucosae: Clinical Features, Diagnosis, and Management , 2018, Clinical Reviews in Allergy & Immunology.

[17]  Ang Lin,et al.  Granulocytes: New Members of the Antigen-Presenting Cell Family , 2017, Front. Immunol..

[18]  Liang Li,et al.  BP180 Is Critical in the Autoimmunity of Bullous Pemphigoid , 2017, Front. Immunol..

[19]  D. Zillikens,et al.  Analysis of serum markers of cellular immune activation in patients with bullous pemphigoid , 2017, Experimental dermatology.

[20]  H. Simon,et al.  Eosinophils as putative therapeutic targets in bullous pemphigoid , 2017, Experimental dermatology.

[21]  P. Tighe,et al.  IgE autoantibodies and their association with the disease activity and phenotype in bullous pemphigoid: a systematic review , 2017, Archives of Dermatological Research.

[22]  G. Stingl,et al.  IgE autoreactivity in bullous pemphigoid: eosinophils and mast cells as major targets of pathogenic immune reactants† , 2017, The British journal of dermatology.

[23]  C. Wennerås,et al.  Differences in eosinophil molecular profiles between children and adults with eosinophilic esophagitis , 2017, Allergy.

[24]  A. Enk,et al.  Elevated IL-31 serum levels in bullous pemphigoid patients correlate with eosinophil numbers and are associated with BP180-IgE. , 2017, Journal of dermatological science.

[25]  F. Antonicelli,et al.  Eosinophil Cationic Protein (ECP), a predictive marker of bullous pemphigoid severity and outcome , 2017, Scientific Reports.

[26]  T. Hashimoto,et al.  Detection of IgE autoantibodies to BP180 and BP230 and their relationship to clinical features in bullous pemphigoid , 2017, The British journal of dermatology.

[27]  H. Simon,et al.  Evidence for a role of eosinophils in blister formation in bullous pemphigoid , 2017, Allergy.

[28]  K. Amber,et al.  Vesiculobullous eruption in a patient receiving psoralen ultraviolet A (PUVA) treatment for prurigo nodules: a case of PUVA‐aggravated pemphigoid nodularis , 2017, Clinical and experimental dermatology.

[29]  K. Amber,et al.  615 Eosinophil major basic protein has a concentration-dependent cytotoxic effect on cultured keratinocytes , 2017 .

[30]  L. Quintarelli,et al.  Serum levels and tissue expression of interleukin-31 in dermatitis herpetiformis and bullous pemphigoid. , 2017, Journal of dermatological science.

[31]  E. Papakonstantinou,et al.  Increased Activity and Apoptosis of Eosinophils in Blister Fluids, Skin and Peripheral Blood of Patients with Bullous Pemphigoid. , 2017, Acta dermato-venereologica.

[32]  K. Amber,et al.  A multi‐hit hypothesis of bullous pemphigoid and associated neurological disease: Is HLA‐DQB1*03:01, a potential link between immune privileged antigen exposure and epitope spreading? , 2017, HLA.

[33]  F. Antonicelli,et al.  Bullous Pemphigoid: A Review of its Diagnosis, Associations and Treatment , 2017, American Journal of Clinical Dermatology.

[34]  T. Dainichi,et al.  Combination therapy of prednisolone and i.v. immunoglobulin treatment decreases circulating interleukin‐5 and eosinophils in a patient with bullous pemphigoid , 2017, The Journal of dermatology.

[35]  A. Beekman,et al.  A 2-year prospective study , 2017 .

[36]  T. Ruzicka,et al.  Bullous pemphigoid. , 2017, Autoimmunity reviews.

[37]  J. V. van Woensel,et al.  Neutrophil Extracellular Traps in Respiratory Disease: guided anti-microbial traps or toxic webs? , 2017, Paediatric respiratory reviews.

[38]  H. Shimizu,et al.  Autoantibody Profile Differentiates between Inflammatory and Noninflammatory Bullous Pemphigoid. , 2016, The Journal of investigative dermatology.

[39]  M. Rothenberg,et al.  The Regulatory Function of Eosinophils , 2016, Microbiology spectrum.

[40]  J. Kere,et al.  The pruritus- and TH2-associated cytokine IL-31 promotes growth of sensory nerves. , 2016, The Journal of allergy and clinical immunology.

[41]  D. Zillikens,et al.  IgE-mediated mechanisms in bullous pemphigoid and other autoimmune bullous diseases , 2016, Expert review of clinical immunology.

[42]  H. Koga,et al.  Clinical and immunological profiles of anti-BP230-type bullous pemphigoid: Restriction of epitopes to the C-terminal domain of BP230, shown by novel ELISAs of BP230-domain specific recombinant proteins , 2016, European Journal of Dermatology.

[43]  S. Debanne,et al.  Evaluation of ELISA testing for BP180 and BP230 as a diagnostic modality for bullous pemphigoid: a clinical experience , 2016, Archives of Dermatological Research.

[44]  Q. Lu,et al.  Eosinophilic Skin Diseases: A Comprehensive Review , 2016, Clinical Reviews in Allergy & Immunology.

[45]  F. Levi-Schaffer,et al.  Substance P and eosinophils: an itchy connection , 2015, Experimental dermatology.

[46]  K. Nakagome,et al.  Trans-basement membrane migration of eosinophils induced by LPS-stimulated neutrophils from human peripheral blood in vitro , 2015, ERJ Open Research.

[47]  N. Novak,et al.  IL-31 Induces Chemotaxis, Calcium Mobilization, Release of Reactive Oxygen Species, and CCL26 in Eosinophils, Which Are Capable to Release IL-31. , 2015, The Journal of investigative dermatology.

[48]  S. Ständer,et al.  Substance P activates human eosinophils , 2015, Experimental dermatology.

[49]  J. Jacków,et al.  Deletion of the major bullous pemphigoid epitope region of collagen XVII induces blistering, autoimmunization, and itching in mice. , 2015, The Journal of investigative dermatology.

[50]  P. Wolkenstein,et al.  Positive Direct Immunofluorescence Is of Better Value than ELISA-BP180 and ELISA-BP230 Values for the Prediction of Relapse after Treatment Cessation in Bullous Pemphigoid: A Retrospective Study of 97 Patients , 2015, Dermatology.

[51]  M. Cugno,et al.  Eosinophil cationic protein levels parallel coagulation activation in the blister fluid of patients with bullous pemphigoid , 2015, Journal of the European Academy of Dermatology and Venereology : JEADV.

[52]  H. Shimizu,et al.  In vivo analysis of IgE autoantibodies in bullous pemphigoid: a study of 100 cases. , 2015, Journal of dermatological science.

[53]  James J. Lee,et al.  Eosinophil-dependent skin innervation and itching following contact toxicant exposure in mice. , 2015, The Journal of allergy and clinical immunology.

[54]  Cheng-Li Lin,et al.  A population-based cohort study. , 2015 .

[55]  Paige Lacy,et al.  Eosinophil Cytokines, Chemokines, and Growth Factors: Emerging Roles in Immunity , 2014, Front. Immunol..

[56]  K. Tasanen,et al.  Increasing incidence of bullous pemphigoid in Northern Finland: a retrospective database study in Oulu University Hospital , 2014, The British journal of dermatology.

[57]  A. Serwin,et al.  Incidence and mortality of bullous pemphigoid in north‐east Poland (Podlaskie Province), 1999–2012: a retrospective bicentric cohort study , 2014, International journal of dermatology.

[58]  R. Srikantha,et al.  Human Eosinophils Express the High Affinity IgE Receptor, FcεRI, in Bullous Pemphigoid , 2014, PloS one.

[59]  M. Walsh,et al.  Eosinophil peroxidase induces expression of cholinergic genes via cell surface neural interactions. , 2014, Molecular immunology.

[60]  D. Woodley,et al.  Omalizumab therapy for bullous pemphigoid. , 2014, Journal of the American Academy of Dermatology.

[61]  C. Antoniou,et al.  Drug‐induced pemphigoid: a review of the literature , 2014, Journal of the European Academy of Dermatology and Venereology : JEADV.

[62]  K. Amber,et al.  BP180‐ and BP230‐specific IgG autoantibodies in pruritic disorders of the elderly: a preclinical stage of bullous pemphigoid? , 2014, The British journal of dermatology.

[63]  M. Camilleri,et al.  Incidence of bullous pemphigoid and mortality of patients with bullous pemphigoid in Olmsted County, Minnesota, 1960 through 2009. , 2014, Journal of the American Academy of Dermatology.

[64]  D. Zillikens,et al.  Hsp90 blockade modulates bullous pemphigoid IgG-induced IL-8 production by keratinocytes , 2014, Cell Stress and Chaperones.

[65]  E. Hodak,et al.  Diagnosis and classification of pemphigus and bullous pemphigoid. , 2014, Autoimmunity reviews.

[66]  M. Jonkman,et al.  Bullous pemphigoid as pruritus in the elderly: a common presentation. , 2013, JAMA dermatology.

[67]  A. Mari,et al.  Detection of IgG and IgE reactivity to BP180 using the ISAC® microarray system , 2013, The British journal of dermatology.

[68]  S. Seki,et al.  Markers of Antigen Presentation and Activation on Eosinophils and T Cells in the Esophageal Tissue of Patients With Eosinophilic Esophagitis , 2013, Journal of pediatric gastroenterology and nutrition.

[69]  D. Zillikens,et al.  Pemphigoid diseases , 2013, The Lancet.

[70]  H. Tian,et al.  Evaluation of the combination of BP180-NC16a enzyme-linked immunosorbent assay and BP230 enzyme-linked immunosorbent assay in the diagnosis of bullous pemphigoid. , 2012, Indian journal of dermatology, venereology and leprology.

[71]  L. Naldi,et al.  Clinical presentation and diagnostic delay in bullous pemphigoid: a prospective nationwide cohort , 2012, The British journal of dermatology.

[72]  D. Woodley,et al.  Successful treatment of bullous pemphigoid with omalizumab. , 2012, Archives of dermatology.

[73]  P. Courville,et al.  Incidence and mortality of bullous pemphigoid in France. , 2012, The Journal of investigative dermatology.

[74]  S. Eliason,et al.  Collagen XVII (BP180) modulates keratinocyte expression of the proinflammatory chemokine, IL‐8 , 2012, Experimental dermatology.

[75]  C. Bodemer,et al.  Successful management of severe infant bullous pemphigoid with omalizumab , 2012, The British journal of dermatology.

[76]  Y. Hayashi,et al.  Eosinophil Granular Proteins Damage Bronchial Epithelial Cells Infected with Respiratory Syncytial Virus , 2012, International Archives of Allergy and Immunology.

[77]  Lin Ying Liu,et al.  Potent synergistic effect of IL-3 and TNF on matrix metalloproteinase 9 generation by human eosinophils. , 2012, Cytokine.

[78]  D. Zillikens,et al.  Epitope mapping of BP230 leading to a novel enzyme‐linked immunosorbent assay for autoantibodies in bullous pemphigoid , 2012, The British journal of dermatology.

[79]  O. Stasikowska-Kanicka,et al.  Expression of selected neuropeptides in pathogenesis of bullous pemphigoid and dermatitis herpetiformis. , 2012, Polish journal of pathology : official journal of the Polish Society of Pathologists.

[80]  P. Weller,et al.  Eosinophils and disease pathogenesis. , 2012, Seminars in hematology.

[81]  T. Jakob,et al.  The Flavonoid Luteolin Inhibits Fcγ-Dependent Respiratory Burst in Granulocytes, but Not Skin Blistering in a New Model of Pemphigoid in Adult Mice , 2012, PloS one.

[82]  E. Mohammadi,et al.  Barriers and facilitators related to the implementation of a physiological track and trigger system: A systematic review of the qualitative evidence , 2017, International journal for quality in health care : journal of the International Society for Quality in Health Care.

[83]  H. Shimizu,et al.  Noncollagenous 16A domain of type XVII collagen-reactive CD4+ T cells play a pivotal role in the development of active disease in experimental bullous pemphigoid model. , 2012, Clinical immunology.

[84]  Sinyoung Kim,et al.  Usefulness of Enzyme-linked Immunosorbent Assay Using Recombinant BP180 and BP230 for Serodiagnosis and Monitoring Disease Activity of Bullous Pemphigoid , 2012, Annals of dermatology.

[85]  C. Berek,et al.  Immunization induces activation of bone marrow eosinophils required for plasma cell survival , 2012, European journal of immunology.

[86]  L. Borradori,et al.  Bullous pemphigoid: from the clinic to the bench. , 2012, Clinics in dermatology.

[87]  M. Meurer,et al.  Up‐regulation of CCL11 and CCL26 is associated with activated eosinophils in bullous pemphigoid , 2011, Clinical and experimental immunology.

[88]  James J. Lee,et al.  Eosinophils Increase Neuron Branching in Human and Murine Skin and In Vitro , 2011, PloS one.

[89]  K. Aozasa,et al.  SIRPα/CD172a Regulates Eosinophil Homeostasis , 2011, The Journal of Immunology.

[90]  R. Srikantha,et al.  FcR-Independent Effects of IgE and IgG Autoantibodies in Bullous Pemphigoid , 2011, The Journal of Immunology.

[91]  James J. Lee,et al.  Major Basic Protein from Eosinophils and Myeloperoxidase from Neutrophils Are Required for Protective Immunity to Strongyloides stercoralis in Mice , 2011, Infection and Immunity.

[92]  F. Antonicelli,et al.  Usefulness of BP230 and BP180-NC16a enzyme-linked immunosorbent assays in the initial diagnosis of bullous pemphigoid: a retrospective study of 138 patients. , 2011, Archives of dermatology.

[93]  C. Berek,et al.  Eosinophils are required for the maintenance of plasma cells in the bone marrow , 2011, Nature Immunology.

[94]  D. Bishop-Bailey,et al.  Analysing the eosinophil cationic protein - a clue to the function of the eosinophil granulocyte , 2011, Respiratory research.

[95]  H. Simon,et al.  Eosinophil extracellular DNA traps in skin diseases. , 2011, The Journal of allergy and clinical immunology.

[96]  E. Boix,et al.  Eosinophil-induced neurotoxicity: The role of eosinophil cationic protein/RNase 3 , 2010, Journal of Neuroimmunology.

[97]  M. D. Chang,et al.  TNF-α Mediates Eosinophil Cationic Protein-induced Apoptosis in BEAS-2B Cells , 2010, BMC Cell Biology.

[98]  M. Ballmaier,et al.  Common γ-Chain-Dependent Signals Confer Selective Survival of Eosinophils in the Murine Small Intestine1 , 2009, The Journal of Immunology.

[99]  L. Naldi,et al.  Incidence of bullous pemphigoid and pemphigus in Switzerland: a 2‐year prospective study , 2009, The British journal of dermatology.

[100]  E. Bröcker,et al.  Prospective analysis of the incidence of autoimmune bullous disorders in Lower Franconia, Germany , 2009, Journal der Deutschen Dermatologischen Gesellschaft = Journal of the German Society of Dermatology : JDDG.

[101]  Naoko Kamio,et al.  IgG from patients with bullous pemphigoid depletes cultured keratinocytes of the 180-kDa bullous pemphigoid antigen (type XVII collagen) and weakens cell attachment. , 2009, The Journal of investigative dermatology.

[102]  J. Fairley,et al.  Pathogenicity of IgE in autoimmunity: successful treatment of bullous pemphigoid with omalizumab. , 2009, The Journal of allergy and clinical immunology.

[103]  D. Zillikens,et al.  IgE autoantibodies against the intracellular domain of BP180 , 2009, The British journal of dermatology.

[104]  D. Fanoni,et al.  Activation of blood coagulation in bullous pemphigoid: role of eosinophils, and local and systemic implications , 2009, The British journal of dermatology.

[105]  G. Gleich,et al.  Mechanisms of eosinophil major basic protein-induced hyperexcitability of vagal pulmonary chemosensitive neurons. , 2009, American journal of physiology. Lung cellular and molecular physiology.

[106]  P. Weller,et al.  Human eosinophils constitutively express multiple Th1, Th2, and immunoregulatory cytokines that are secreted rapidly and differentially , 2008, Journal of leukocyte biology.

[107]  R. Hubbard,et al.  Bullous pemphigoid and pemphigus vulgaris—incidence and mortality in the UK: population based cohort study , 2008, BMJ : British Medical Journal.

[108]  G. Gleich,et al.  Sensitization of isolated rat vagal pulmonary sensory neurons by eosinophil-derived cationic proteins. , 2008, American journal of physiology. Lung cellular and molecular physiology.

[109]  S. Hunt,et al.  Further exploring the brain-skin connection: stress worsens dermatitis via substance P-dependent neurogenic inflammation in mice. , 2008, The Journal of investigative dermatology.

[110]  I. Ghiran,et al.  Airway Eosinophils: Allergic Inflammation Recruited Professional Antigen-Presenting Cells1 , 2007, The Journal of Immunology.

[111]  C. Sitaru,et al.  Immunopathology and molecular diagnosis of autoimmune bullous diseases , 2007, Journal of cellular and molecular medicine.

[112]  J. Zone,et al.  IgE basement membrane zone antibodies induce eosinophil infiltration and histological blisters in engrafted human skin on SCID mice. , 2007, The Journal of investigative dermatology.

[113]  C. Ferland,et al.  Modulation of eosinophil activation in vitro by a nicotinic receptor agonist , 2007, Journal of leukocyte biology.

[114]  R. Watanabe,et al.  Increased serum levels of a proliferation-inducing ligand in patients with bullous pemphigoid. , 2007, Journal of dermatological science.

[115]  R. Watanabe,et al.  Serum chemokine profile in patients with bullous pemphigoid , 2007, The British journal of dermatology.

[116]  R. Watanabe,et al.  Serum levels of BAFF are increased in bullous pemphigoid but not in pemphigus vulgaris , 2006, The British journal of dermatology.

[117]  Q. Hamid,et al.  Increased expression of Th2-associated chemokines in bullous pemphigoid disease. Role of eosinophils in the production and release of these chemokines. , 2006, Clinical immunology.

[118]  R. Eming,et al.  T cell control in autoimmune bullous skin disorders. , 2006, The Journal of clinical investigation.

[119]  S. Dillon,et al.  An APRIL to remember: novel TNF ligands as therapeutic targets , 2006, Nature Reviews Drug Discovery.

[120]  M. Kanazawa,et al.  Eosinophil trans-basement membrane migration induced by interleukin-8 and neutrophils. , 2006, American journal of respiratory cell and molecular biology.

[121]  I. Hall,et al.  Eosinophil-mediated cholinergic nerve remodeling. , 2006, American journal of respiratory cell and molecular biology.

[122]  K. Hashimoto,et al.  Enzyme-linked immunosorbent assay using bacterial recombinant proteins of human BP230 as a diagnostic tool for bullous pemphigoid. , 2006, Journal of dermatological science.

[123]  B. Seed,et al.  B Cell Maturation Antigen, the Receptor for a Proliferation-Inducing Ligand and B Cell-Activating Factor of the TNF Family, Induces Antigen Presentation in B Cells1 , 2005, The Journal of Immunology.

[124]  A. Ormerod,et al.  Annual incidence and mortality of bullous pemphigoid in the Grampian Region of North‐east Scotland , 2005, The British journal of dermatology.

[125]  M. Walsh,et al.  Diverse effects of eosinophil cationic granule proteins on IMR-32 nerve cell signaling and survival. , 2005, American journal of respiratory cell and molecular biology.

[126]  M. Walsh,et al.  Mechanism of eosinophil induced signaling in cholinergic IMR-32 cells. , 2005, American journal of physiology. Lung cellular and molecular physiology.

[127]  A. R.,et al.  Review of literature , 1951, American Potato Journal.

[128]  A. Ghahary,et al.  Cutting Edge: Human Eosinophils Regulate T Cell Subset Selection through Indoleamine 2,3-Dioxygenase1 , 2004, The Journal of Immunology.

[129]  M. Walsh,et al.  Eosinophil Adhesion to Cholinergic IMR-32 Cells Protects against Induced Neuronal Apoptosis1 , 2004, The Journal of Immunology.

[130]  P. Puddu,et al.  Interleukin‐16 expression and release in bullous pemphigoid , 2004, Clinical and experimental immunology.

[131]  Scott R. Presnell,et al.  Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice , 2004, Nature Immunology.

[132]  S. Chakrabarti,et al.  p38 MAP kinase regulates rapid matrix metalloproteinase-9 release from eosinophils. , 2004, Biochemical and biophysical research communications.

[133]  M. Walsh,et al.  Effect of eosinophil adhesion on intracellular signaling in cholinergic nerve cells. , 2004, American journal of respiratory cell and molecular biology.

[134]  R. Bram,et al.  BCMA Is Essential for the Survival of Long-lived Bone Marrow Plasma Cells , 2004, The Journal of experimental medicine.

[135]  M. Meurer,et al.  Tissue Eosinophilia in Pemphigoid Gestationis: Association with Eotaxin and Upregulated Activation Markers on Transmigrated Eosinophils , 2004, American journal of reproductive immunology.

[136]  A. Parodi,et al.  IgE Antibodies in Sera from Patients with Bullous Pemphigoid Are Autoantibodies Preferentially Directed Against the 230-kDa Epidermal Antigen (BP230) , 1998, Journal of Clinical Immunology.

[137]  I. Iwamoto,et al.  Increased immunoreactive interleukin-5 levels in blister fluids of bullous pemphigoid , 2004, Archives of Dermatological Research.

[138]  S. Tsuda,et al.  Alteration in the density, morphology, and biological properties of eosinophils produced by bullous pemphigoid blister fluid , 2004, Archives of Dermatological Research.

[139]  G. Gleich,et al.  Interactions of eosinophil granule proteins with skin: limits of detection, persistence, and vasopermeabilization. , 2003, The Journal of allergy and clinical immunology.

[140]  M. Walsh,et al.  Effects of eosinophils on nerve cell morphology and development: the role of reactive oxygen species and p38 MAP kinase. , 2003, American journal of physiology. Lung cellular and molecular physiology.

[141]  Lin Ying Liu,et al.  Chemokine receptor expression on human eosinophils from peripheral blood and bronchoalveolar lavage fluid after segmental antigen challenge. , 2003, The Journal of allergy and clinical immunology.

[142]  M. Caproni,et al.  Th1, Th2 and Th3 cytokines in the pathogenesis of bullous pemphigoid. , 2002, Journal of dermatological science.

[143]  F. Mackay,et al.  BAFF: A fundamental survival factor for B cells , 2002, Nature Reviews Immunology.

[144]  A. Paller,et al.  Expression of eotaxin, an eosinophil‐selective chemokine, parallels eosinophil accumulation in the vesiculobullous stage of incontinentia pigmenti , 2002, Clinical and experimental immunology.

[145]  C. Akdis,et al.  T cells and eosinophils cooperate in the induction of bronchial epithelial cell apoptosis in asthma. , 2002, The Journal of allergy and clinical immunology.

[146]  P. Puddu,et al.  Increased expression of eotaxin and its specific receptor CCR3 in bullous pemphigoid. , 2002, European journal of dermatology : EJD.

[147]  M. Bowszyc-Dmochowska,et al.  Immediate hypersensitivity phenomena in bullous pemphigoid: critical concepts. , 2002, Journal of medicine.

[148]  Beverley Rader Lugo,et al.  Clinical Experience , 2009 .

[149]  M. Polette,et al.  Respective contribution of neutrophil elastase and matrix metalloproteinase 9 in the degradation of BP180 (type XVII collagen) in human bullous pemphigoid. , 2001, The Journal of investigative dermatology.

[150]  G. Gleich,et al.  Effects of human eosinophil granule-derived cationic proteins on C-fiber afferents in the rat lung. , 2001, Journal of applied physiology.

[151]  E. Bröcker,et al.  The IL‐8 release from cultured human keratinocytes, mediated by antibodies to bullous pemphigoid autoantigen 180, is inhibited by dapsone , 2001, Clinical and experimental immunology.

[152]  T. Horio,et al.  Activation of FcεRI-positive eosinophils in bullous pemphigoid , 2001 .

[153]  K. Bhol,et al.  Bullous pemphigoid: interaction of interleukin 5, anti-basement membrane zone antibodies and eosinophils. A preliminary observation. . , 2001, Cytokine.

[154]  L. Wang,et al.  High levels of interleukin‐8, soluble CD4 and soluble CD8 in bullous pemphigoid blister fluid. The relationship between local cytokine production and lesional T‐cell activities , 2000, The British journal of dermatology.

[155]  S. Jainta,et al.  Autoantibodies to BP180 associated with bullous pemphigoid release interleukin-6 and interleukin-8 from cultured human keratinocytes. , 2000, The Journal of investigative dermatology.

[156]  O. Johansson,et al.  Eosinophil cationic protein- and eosinophil-derived neurotoxin/eosinophil protein X-immunoreactive eosinophils in prurigo nodularis , 2000, Archives of Dermatological Research.

[157]  W. Pichler,et al.  Increased coexpression of eotaxin and interleukin 5 in bullous pemphigoid. , 2000, Acta dermato-venereologica.

[158]  M. Furue,et al.  Elevated levels of eotaxin and interleukin‐5 in blister fluid of bullous pemphigoid: correlation with tissue eosinophilia , 2000, The British journal of dermatology.

[159]  E. Bröcker,et al.  IgG4 and IgE are the major immunoglobulins targeting the NC16A domain of BP180 in Bullous pemphigoid: serum levels of these immunoglobulins reflect disease activity. , 2000, Journal of the American Academy of Dermatology.

[160]  P. Weller,et al.  Lymph node trafficking and antigen presentation by endobronchial eosinophils. , 2000, The Journal of clinical investigation.

[161]  E. Bröcker,et al.  Serum levels of autoantibodies to BP180 correlate with disease activity in patients with bullous pemphigoid. , 2000, Archives of dermatology.

[162]  S. Shapiro,et al.  A critical role for neutrophil elastase in experimental bullous pemphigoid. , 2000, The Journal of clinical investigation.

[163]  M. Humbert,et al.  Eosinophil chemotactic chemokines (eotaxin, eotaxin-2, RANTES, monocyte chemoattractant protein-3 (MCP-3), and MCP-4), and C-C chemokine receptor 3 expression in bronchial biopsies from atopic and nonatopic (Intrinsic) asthmatics. , 1999, Journal of immunology.

[164]  D. Zillikens,et al.  Increased risk of bullous pemphigoid in male and very old patients: A population-based study on incidence. , 1999, Journal of the American Academy of Dermatology.

[165]  Amy S Orr,et al.  BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. , 1999, Science.

[166]  Franco Ameglio,et al.  Cytokines and bullous pemphigoid. , 1999, European cytokine network.

[167]  P. Amerio,et al.  A Th2-like Cytokine Response is Involved in Bullous Pemphigoid. The Role of IL-4 and IL-5 in the Pathogenesis of the Disease , 1999, International journal of immunopathology and pharmacology.

[168]  J. Kinet,et al.  The high-affinity IgE receptor (Fc epsilon RI): from physiology to pathology. , 1999 .

[169]  R. Eming,et al.  Identification and characterization of autoreactive T cell responses to bullous pemphigoid antigen 2 in patients and healthy controls. , 1998, The Journal of clinical investigation.

[170]  R. Lutter,et al.  Triple role of platelet-activating factor in eosinophil migration across monolayers of lung epithelial cells: eosinophil chemoattractant and priming agent and epithelial cell activator. , 1998, Journal of immunology.

[171]  M. Inaoki,et al.  Increased serum levels of interleukin (IL)-5, IL-6 and IL-8 in bullous pemphigoid. , 1998, Journal of dermatological science.

[172]  A. Mastroianni,et al.  IL-5 levels in the serum and blister fluid of patients with bullous pemphigoid: correlations with eosinophil cationic protein, RANTES, IgE and disease severity , 1998, Archives of Dermatological Research.

[173]  R. Bram,et al.  NF-AT activation induced by a CAML-interacting member of the tumor necrosis factor receptor superfamily. , 1997, Science.

[174]  H. Kita,et al.  Migration of eosinophils through basement membrane components in vitro: role of matrix metalloproteinase-9. , 1997, American journal of respiratory cell and molecular biology.

[175]  G. Gleich,et al.  Localization of eosinophils to airway nerves and effect on neuronal M2 muscarinic receptor function. , 1997, The American journal of physiology.

[176]  H. Kita,et al.  Transmigration of eosinophils through basement membrane components in vitro: synergistic effects of platelet-activating factor and eosinophil-active cytokines. , 1997, American journal of respiratory cell and molecular biology.

[177]  M. Capron,et al.  IgE autoantibodies directed against the major bullous pemphigoid antigen in patients with a severe form of pemphigoid. , 1996, Journal of immunology.

[178]  D. Wong,et al.  Human eosinophils elaborate the lymphocyte chemoattractants. IL-16 (lymphocyte chemoattractant factor) and RANTES. , 1996, Journal of immunology.

[179]  M. Peters,et al.  Deposition of eosinophil granule proteins precedes blister formation in bullous pemphigoid. Comparison with neutrophil and mast cell granule proteins. , 1996, The American journal of pathology.

[180]  N. Frossard,et al.  Selective recruitment of eosinophils by substance P after repeated allergen exposure in allergic rhinitis , 1995, Allergy.

[181]  B. Premack,et al.  Activation of dual T cell signaling pathways by the chemokine RANTES. , 1995, Science.

[182]  J. Rigaut,et al.  BCMAp: an integral membrane protein in the Golgi apparatus of human mature B lymphocytes. , 1995, International immunology.

[183]  G. Cappelli,et al.  SERUM EOSINOPHIL CATIONIC PROTEIN (ecp) IN BULLOUS PEMPHIGOID , 1995, International journal of dermatology.

[184]  C. Irvin,et al.  Cationic protein-induced sensory nerve activation: role of substance P in airway hyperresponsiveness and plasma protein extravasation. , 1994, The Journal of clinical investigation.

[185]  M. Goodfield Skin lesions in psoriasis. , 1994, Bailliere's clinical rheumatology.

[186]  W. Parks,et al.  92-kD gelatinase is produced by eosinophils at the site of blister formation in bullous pemphigoid and cleaves the extracellular domain of recombinant 180-kD bullous pemphigoid autoantigen. , 1994, The Journal of clinical investigation.

[187]  E. Schöpf,et al.  Granulocyte activation in bullous diseases: release of granular proteins in bullous pemphigoid and pemphigus vulgaris. , 1993, Journal of the American Academy of Dermatology.

[188]  L. Koenderman,et al.  Effects of nedocromil sodium on in vitro induced migration, activation, and mediator release from human granulocytes. , 1993, The Journal of allergy and clinical immunology.

[189]  P. Forsythe,et al.  RANTES is a chemotactic and activating factor for human eosinophils. , 1993, Journal of immunology.

[190]  G. Gleich,et al.  Human eosinophil major basic protein is an endogenous allosteric antagonist at the inhibitory muscarinic M2 receptor. , 1993, The Journal of clinical investigation.

[191]  Z. Cohen,et al.  Ultrastructural identification of exocytosis of granules from human gut eosinophils in vivo. , 1993, International archives of allergy and immunology.

[192]  T. Schall,et al.  RANTES and macrophage inflammatory protein 1 alpha induce the migration and activation of normal human eosinophil granulocytes , 1992, The Journal of experimental medicine.

[193]  A. Mallet,et al.  Cytokine RANTES released by thrombin-stimulated platelets is a potent attractant for human eosinophils , 1992, The Journal of experimental medicine.

[194]  S. Tsuda,et al.  Ultrastructural Aspects of Infiltrated Eosinophils in Bullous Pemphigoid , 1992, The Journal of dermatology.

[195]  S. Tsuda,et al.  Eosinophil Phenotypes in Bullous Pemphigoid , 1992, The Journal of dermatology.

[196]  J. Schröder,et al.  Neutrophil-activating proteins in psoriasis. , 1992, The Journal of investigative dermatology.

[197]  D. Goeddel,et al.  Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES , 1990, Nature.

[198]  M. Wadhwa,et al.  Cytokines in skin lesions of psoriasis. , 1990, Cytokine.

[199]  G. Vercellotti,et al.  Evidence for eosinophil degranulation in the pathogenesis of herpes gestationis. , 1989, Archives of dermatology.

[200]  G. Gleich,et al.  Pharmacological control of human basophil histamine release stimulated by eosinophil granule major basic protein. , 1989, Immunology.

[201]  Daniel Lucey,et al.  Mature human eosinophils have the capacity to express HLA-DR. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[202]  J. Bonnetblanc,et al.  Blood eosinophilia as a severity marker for bullous pemphigoid. , 1987, Journal of the American Academy of Dermatology.

[203]  G. Murphy,et al.  The immunopathology of bullous pemphigoid. , 1987, Clinics in dermatology.

[204]  P. Venge,et al.  Mechanism of membrane damage mediated by human eosinophil cationic protein , 1986, Nature.

[205]  B. Mondino,et al.  Dermatological diseases and the peripheral cornea. , 1986, International ophthalmology clinics.

[206]  R. Ekman,et al.  Substance P and vasoactive intestinal peptide in bullous and inflammatory skin disease. , 1986, Acta dermato-venereologica.

[207]  K. Hashimoto,et al.  Eosinophilic spongiosis in bullous pemphigoid. , 1984, Archives of dermatology.

[208]  G. Gleich,et al.  Activation of basophil and mast cell histamine release by eosinophil granule major basic protein , 1983, The Journal of experimental medicine.

[209]  R. Jordon,et al.  Bullous pemphigoid: a cause of peripheral blood eosinophilia. , 1983, Journal of the American Academy of Dermatology.

[210]  M. Pittelkow,et al.  Eosinophilic spongiosis: a clinicopathologic review of seventy-one cases. , 1983, Journal of the American Academy of Dermatology.

[211]  M. Mihm,et al.  Bullous pemphigoid, an ultrastructural study of the inflammatory response: eosinophil, basophil and mast cell granule changes in multiple biopsies from one patient. , 1982, The Journal of investigative dermatology.

[212]  L. Dubertret,et al.  Cellular events leading to blister formation in bullous pemphigoid , 1980, The British journal of dermatology.

[213]  T. Tomasi,et al.  Immunopathology of bullous pemphigoid. Basement membrane deposition of IgE, alternate pathway components and fibrin. , 1974, Clinical and experimental immunology.

[214]  E. Beutner,et al.  IgE levels in sera of patients with pemphigus or bullous pemphigoid. , 1974, Archives of dermatology.

[215]  S. Devata,et al.  Eosinophilia , 2018, The Saint-Chopra Guide to Inpatient Medicine.

[216]  W. Hartroft PHYSIOLOGY IN PATHOLOGY. , 1964, Laboratory investigation; a journal of technical methods and pathology.