Dynamic model of an industrial heat pump using water as refrigerant

Abstract In order to improve industrial energy efficiency, the development of a high temperature heat pump using water vapor as refrigerant is investigated. Technical problems restraining the feasibility of this industrial heat pump are surmounted by a specifically designed heat pump and the development of a new twin screw compressor. This article presents the development of a new dynamic model of this twin screw compressor and of the heat pump using flash evaporation. This model takes into account the presence and the purging mechanism (purging reservoir) of the non-condensable gases especially during the start-up procedure. A finite volume (FV) approach is used for the plate heat-exchangers models while a moving boundary (MB) approach between phases is implemented for the purging and the flash evaporation systems models. The models are developed using Modelica as a modeling language without any library involvement and taking into account as many details as possible to closely represent the real system.

[1]  H. Kretzschmar,et al.  The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam , 2000 .

[2]  Pradeep Bansal,et al.  Transient simulation of vapour-compression packaged liquid chillers , 2002 .

[3]  E. W. Grald,et al.  Prediction of cyclic heat pump performance with a fully distributed model and a comparison with experimental data , 1987 .

[4]  P. Haberschill,et al.  Dynamic Model of a Vapor-Compression Refrigerating Machine Using R-407C , 2003 .

[5]  L. Petzold A description of dassl: a differential/algebraic system solver , 1982 .

[6]  M. Shah A general correlation for heat transfer during film condensation inside pipes , 1979 .

[7]  Souad Harmand,et al.  Experimental study of flash evaporation of a water film , 2002 .

[8]  Yaoyu Li,et al.  Modelica-Based Dynamic Modeling of a Chilled-Water Cooling Coil , 2010 .

[9]  Ricardo Nicolau Nassar Koury,et al.  Numerical simulation of a variable speed refrigeration system , 2001 .

[10]  Gerhard Schmitz,et al.  Modelling and transient simulation of CO2-refrigeration systems with Modelica , 2004 .

[11]  Morten Willatzen,et al.  A general dynamic simulation model for evaporators and condensers in refrigeration. Part II: simulation and control of an evaporator , 1998 .

[12]  André Lallemand,et al.  Comportement dynamique d'une pompe à chaleur au CO2 en cycles sous critique et transcritique. , 2007 .

[13]  R. W. Rasmussen,et al.  Performance of engine-driven heat pumps under cycling conditions , 1987 .

[14]  Khattar Assaf Intégration d'une pompe à chaleur dans un procédé agroalimentaire : simulation, expérimentation et intégration , 2010 .

[15]  A. C Cleland,et al.  Simulation of industrial refrigeration plants under variable load conditions , 1983 .

[16]  Andrew G. Alleyne,et al.  A dynamic model of a vapor compression cycle with shut-down and start-up operations , 2010 .

[17]  Morten Willatzen,et al.  A general dynamic simulation model for evaporators and condensers in refrigeration. Part I: moving-boundary formulation of two-phase flows with heat exchange , 1998 .

[18]  M. Otter,et al.  Modelica - A Unified Object-Oriented Language for Physical Systems Modeling - Language Specification , 2000 .

[19]  Patrick Schalbart Modélisation du fonctionnement en régime dynamique d'une machine frigorifique bi-étagée à turbo-compresseurs : application à sa régulation , 2006 .

[20]  Gregory Nellis,et al.  The commercial feasibility of the use of water vapor as a refrigerant , 2007 .

[21]  Peter A. Fritzson,et al.  Principles of object-oriented modeling and simulation with Modelica 2.1 , 2004 .

[22]  P. Haberschill,et al.  Water vapour as refrigerant for a new high temperature heat pump , 2011 .

[23]  Norbert Müller,et al.  A comparative study of water as a refrigerant with some current refrigerants , 2005 .

[24]  James E. Braun,et al.  A comparison of moving-boundary and finite-volume formulations for transients in centrifugal chillers , 2008 .

[25]  James M. Calm,et al.  The next generation of refrigerants – Historical review, considerations, and outlook , 2008 .

[26]  Andrew G. Alleyne,et al.  An advanced nonlinear switched heat exchanger model for vapor compression cycles using the moving-boundary method , 2008 .