Multipoint metropolis method with application to hybrid Monte Carlo
暂无分享,去创建一个
[1] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[2] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[3] S. Duane,et al. Hybrid Monte Carlo , 1987 .
[4] Paul B. Mackenze. An Improved Hybrid Monte Carlo Method , 1989 .
[5] C. Geyer. Markov Chain Monte Carlo Maximum Likelihood , 1991 .
[6] A. Kennedy,et al. Acceptances and autocorrelations in hybrid Monte Carlo , 1991 .
[7] M. Klein,et al. Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .
[8] Radford M. Neal. An improved acceptance procedure for the hybrid Monte Carlo algorithm , 1992, hep-lat/9208011.
[9] Esselink,et al. Parallel Monte Carlo simulations. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[10] Kyoung-Sun Yim. Parallel Monte Carlo Simulation , 1998 .
[11] G. Roberts,et al. Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .
[12] M. Deem,et al. A biased Monte Carlo scheme for zeolite structure solution , 1998, cond-mat/9809085.
[13] Jun S. Liu,et al. The Multiple-Try Method and Local Optimization in Metropolis Sampling , 2000 .
[14] Berend Smit,et al. Understanding Molecular Simulation , 2001 .
[15] W. Wong,et al. Real-Parameter Evolutionary Monte Carlo With Applications to Bayesian Mixture Models , 2001 .