Controlling particle size in the Stöber process and incorporation of calcium.

[1]  Julian R. Jones,et al.  A multinuclear solid state NMR spectroscopic study of the structural evolution of disordered calcium silicate sol-gel biomaterials. , 2015, Physical chemistry chemical physics : PCCP.

[2]  Julian R. Jones,et al.  Preconditioned 70S30C bioactive glass foams promote osteogenesis in vivo. , 2013, Acta biomaterialia.

[3]  Anna Lukowiak,et al.  Bioactive glass nanoparticles obtained through sol-gel chemistry. , 2013, Chemical communications.

[4]  Julian R. Jones,et al.  Bioactive Glass Foam Scaffolds are Remodelled by Osteoclasts and Support the Formation of Mineralized Matrix and Vascular Networks In Vitro , 2013, Advanced Healthcare Materials.

[5]  Julian R. Jones,et al.  Effect of calcium source on structure and properties of sol-gel derived bioactive glasses. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[6]  Molly M. Stevens,et al.  Emerging techniques for submicrometer particle sizing applied to Stöber silica. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[7]  J. Mano,et al.  Preparation and characterization of bioactive glass nanoparticles prepared by sol–gel for biomedical applications , 2011, Nanotechnology.

[8]  D. Brauer,et al.  Predicting the bioactivity of glasses using the network connectivity or split network models , 2011 .

[9]  Aldo R Boccaccini,et al.  Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function. , 2011, Biomaterials.

[10]  Aldo R Boccaccini,et al.  A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. , 2011, Biomaterials.

[11]  Molly M Stevens,et al.  Spherical bioactive glass particles and their interaction with human mesenchymal stem cells in vitro. , 2011, Biomaterials.

[12]  Xuesi Chen,et al.  Mono-dispersed bioactive glass nanospheres: preparation and effects on biomechanics of mammalian cells. , 2010, Journal of biomedical materials research. Part A.

[13]  D. Qiu,et al.  Bioactive glass sol-gel foam scaffolds: Evolution of nanoporosity during processing and in situ monitoring of apatite layer formation using small- and wide-angle X-ray scattering. , 2009, Journal of biomedical materials research. Part A.

[14]  Xuesi Chen,et al.  Preparation of bioactive glass ceramic nanoparticles by combination of sol–gel and coprecipitation method , 2009 .

[15]  Julian R. Jones,et al.  Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass , 2009 .

[16]  E. Munson,et al.  Pure insulin nanoparticle agglomerates for pulmonary delivery. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[17]  M. Vallet‐Regí,et al.  Multinuclear Solid-State NMR Studies of Ordered Mesoporous Bioactive Glasses , 2008 .

[18]  Jiang Chang,et al.  Preparation and characterization of nano-bioactive-glasses (NBG) by a quick alkali-mediated sol–gel method , 2007 .

[19]  F. Branda,et al.  The effect of mixing alkoxides on the Stöber particles size , 2007 .

[20]  Julian R. Jones,et al.  Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells. , 2007, Biomaterials.

[21]  J. Zou,et al.  Preparation and characterization of mesoporous silica spheres with bimodal pore structure from silica/hyperbranched polyester nanocomposites , 2006 .

[22]  Kazumi Matsushige,et al.  A novel method for synthesis of silica nanoparticles. , 2005, Journal of colloid and interface science.

[23]  M. Z. Hu,et al.  Size, volume fraction, and nucleation of Stober silica nanoparticles. , 2003, Journal of colloid and interface science.

[24]  P. Granger,et al.  NMR Nomenclature. Nuclear Spin Properties and Conventions for Chemical Shifts (IUPAC Recommendations 2001) , 2002 .

[25]  Robin K. Harris,et al.  NMR Nomenclature: Nuclear Spin Properties and Conventions for Chemical Shifts—IUPAC Recommendations , 2002 .

[26]  Larry L Hench,et al.  Third-Generation Biomedical Materials , 2002, Science.

[27]  H. Kim,et al.  Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles , 2002 .

[28]  L L Hench,et al.  Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. , 2001, Journal of biomedical materials research.

[29]  A. McCormick,et al.  A closer look at an aggregation model of the Stober process , 1998 .

[30]  A. P. Hammersley,et al.  Calibration and correction of spatial distortions in 2D detector systems , 1994 .

[31]  A. Vrij,et al.  Monodisperse Colloidal Silica Spheres from Tetraalkoxysilanes: Particle Formation and Growth Mechanism , 1992 .

[32]  T Kitsugi,et al.  Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. , 1990, Journal of biomedical materials research.

[33]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[34]  R. R. Brunson,et al.  The base-catalyzed hydrolysis and condensation reactions of dilute and concentrated TEOS solutions , 1990 .

[35]  Charles F. Zukoski,et al.  Preparation of monodisperse silica particles: control of size and mass fraction , 1988 .

[36]  E. Gulari,et al.  Dynamics of Growth of Silica Particles from Ammonia-Catalyzed Hydrolysis of Tetra-ethyl-orthosilicate , 1988 .

[37]  J. W. Jansen,et al.  Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents , 1981 .

[38]  V. Lamer,et al.  Theory, Production and Mechanism of Formation of Monodispersed Hydrosols , 1950 .

[39]  Julian R. Jones,et al.  Monodispersed Bioactive Glass Submicron Particles and Their Effect on Bone Marrow and Adipose Tissue‐Derived Stem Cells , 2014, Advanced healthcare materials.

[40]  K. Perez Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , 2014 .

[41]  Julian R Jones,et al.  Review of bioactive glass: from Hench to hybrids. , 2013, Acta biomaterialia.

[42]  H. Mansur,et al.  Synthesis, characterization and cytocompatibility of spherical bioactive glass nanoparticles for potential hard tissue engineering applications. , 2013, Biomedical materials.

[43]  Ismail Ab Rahman,et al.  Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites — a review , 2012 .

[44]  M. Almukainzi,et al.  Simulated Biological Fluids with Possible Application in Dissolution Testing , 2011 .

[45]  D. H. Napper,et al.  Coagulative nucleation and particle size distributions in emulsion polymerization , 1984 .

[46]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .