Integrated microwave and millimeter-wave phased-array designs in silicon technologies

This research focuses on the design and analysis of on- chip phased-array receivers and transmitters in silicon technologies. Passive phase shifters have been widely used in conventional discrete implementations of phased-arrays which are based on transmit/receive modules in III-V technologies. However their large volume and high loss impose several challenging issues for on-chip integration. To leverage system optimizations of on-chip phased-arrays, active phase shifter architecture is primarily investigated in this dissertation. The active phase shifter utilizes a quadrature signal interpolation where the I/Q signals are added with appropriate amplitude and polarity to synthesize the required phase. The quadrature signal generator is a key element for accurate multi-bit phase states in the active phase shifter. To generate lossless wideband quadrature signals, a novel I/Q signal generator based on second-order L-C series resonance is developed. Active phase shifters with 4-bit and 5-bit control are then designed in 0.13-um and 0.18-um CMOS technologies and tested successfully for 6-26 GHz phased- arrays applications, featuring the smallest chip size ever reported at these frequencies with similar phase resolutions. After successful demonstration of the active phase shifters, an eight-element phased-array receiver is developed in 0.18-um SiGe BiCMOS technology for X- and Ku- band satellite communications. The phased-array receiver adopts corporate-feed architecture implemented with active signal combiners. The phased-array receiver is rigorously characterized including channel-to-channel mismatches and signal coupling errors from different channels. The on- chip phased-array designs are then extended to millimeter- wave frequencies. A four-element phased-array receiver and a sixteen-element phased-array transmitter are designed using the SiGe BiCMOS technology and tested successfully for Q-band applications. Wilkinson couplers are compactly integrated for linear coherent signal combining in the Q- band phased-array receiver. Also in the Q-band transmitter array, passive Tee-junction power dividers are integrated as a linear signal feed network. The power divider is based on a coaxial-type shielded transmission line utilizing three-dimensional metal stack, which leads to a compact corporate-feed network suitable for large on-chip arrays. The sixteen-element phased-array transmitter marks the highest integration of phased-array elements known to- date, proving a good scalability to a large array of the proposed phased-array architecture. Also, each phased- array design integrates all digital control units and presents the first demonstration of on-chip silicon phased -array at the corresponding design frequency, solving one of key barriers for low-cost and complex phased-arrays

[1]  M. Racanelli,et al.  SiGe BiCMOS technology for RF circuit applications , 2005, IEEE Transactions on Electron Devices.

[2]  J. Allnutt,et al.  Online Journal of Space Communication a Prediction Model That Combines Rain Attenuation and Other Propagation Impairments along Earth- Satellite Paths , 2022 .

[3]  E. J. Wilkinson An N-Way Hybrid Power Divider , 1960 .

[4]  D. Parker,et al.  Phased arrays-part II: implementations, applications, and future trends , 2002 .

[5]  Giuseppe Palmisano,et al.  Noise figure and impedance matching in RF cascode amplifiers , 1999 .

[6]  R.J. Mailloux,et al.  Phased array theory and technology , 1981, Proceedings of the IEEE.

[7]  M. Chua,et al.  1 GHz programmable analog phase shifter for adaptive antennas , 1998, Proceedings of the IEEE 1998 Custom Integrated Circuits Conference (Cat. No.98CH36143).

[8]  G. Thiele,et al.  Antenna theory and design , 1981 .

[9]  Gabriel M. Rebeiz,et al.  A $Q$ -Band Four-Element Phased-Array Front-End Receiver With Integrated Wilkinson Power Combiners in 0.18-$\mu{{\hbox{m}}}$ SiGe BiCMOS Technology , 2008, IEEE Transactions on Microwave Theory and Techniques.

[10]  R. W. Burns,et al.  A Compacts-Band Diode Phase Shifter , 1973 .

[11]  J. F. White High Power, p-i-n Diode Controlled, Microwave Transmission Phase Shifters , 1965 .

[12]  G.M. Rebeiz,et al.  A 40-50-GHz SiGe 1 : 8 differential power divider using shielded broadside-coupled striplines , 2008, IEEE Transactions on Microwave Theory and Techniques.

[13]  Roberto Verdone,et al.  Millimeter waves for short-range multimedia communication systems , 1998, Proc. IEEE.

[14]  Martin Haardt,et al.  Smart antenna technologies for future wireless systems: trends and challenges , 2004, IEEE Communications Magazine.

[15]  J. S. Mason,et al.  Transmit/receive module technology for X-band active array radar , 1991 .

[16]  G.M. Rebeiz,et al.  A Q-band (40–45 GHz) 16-element phased-array transmitter in 0.18-μm SiGe BiCMOS technology , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[17]  B. Razavi,et al.  A 60-GHz CMOS receiver front-end , 2006, IEEE Journal of Solid-State Circuits.

[18]  N. Imai,et al.  One-chip endless phase shifter IC's for space diversity combiner , 1996 .

[19]  J. Guerci,et al.  Phased-array development at DARPA , 2003, IEEE International Symposium on Phased Array Systems and Technology, 2003..

[20]  Wonill Ha,et al.  Compact InP HBT Power Amplifiers Using Integrated Thick BCB Dielectrics , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[21]  Hyun-Kyu Yu,et al.  Subharmonically pumped CMOS frequency conversion (up and down) circuits for 2-GHz WCDMA direct-conversion transceiver , 2004, IEEE Journal of Solid-State Circuits.

[22]  P. Sivonen,et al.  Analysis of packaging effects and optimization in inductively degenerated common-emitter low-noise amplifiers , 2003 .

[23]  Xiang Guan,et al.  A fully integrated 24-GHz eight-element phased-array receiver in silicon , 2004, IEEE Journal of Solid-State Circuits.

[24]  Hong-Yeh Chang,et al.  New miniature 15-20-GHz continuous-phase/amplitude control MMICs using 0.18-/spl mu/m CMOS technology , 2006, IEEE Transactions on Microwave Theory and Techniques.

[25]  Gabriel M. Rebeiz,et al.  A 22–24 GHz 4-Element CMOS Phased Array With On-Chip Coupling Characterization , 2008, IEEE Journal of Solid-State Circuits.

[26]  D. Bostrom,et al.  A hybrid tile approach for Ka band subarray modules , 1995 .

[27]  D.J. Allstot,et al.  A low-loss phase shifter in 180 nm CMOS for multiple-antenna receivers , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[28]  R. G. Stewart,et al.  X Band Integrated Diode Phase Shifters , 1968 .

[29]  M. Skolnik,et al.  Introduction to Radar Systems , 2021, Advances in Adaptive Radar Detection and Range Estimation.

[30]  Ching-Kuang C. Tzuang,et al.  Characteristics and design of broadside-coupled transmission line at a higher order leaky mode , 2003 .

[31]  H. T. Friis,et al.  A Multiple Unit Steerable Antenna for Short-Wave Reception , 1937, Proceedings of the Institute of Radio Engineers.

[32]  Ari Hottinen,et al.  Industrial embrace of smart antennas and MIMO , 2006, IEEE Wireless Communications.

[33]  Tetsuya Yamada,et al.  Application of phased-array antenna technology to the 21 GHz broadcasting satellite for rain-attenuation compensation , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[34]  Gabriel M. Rebeiz,et al.  A 12-GHz SiGe phase shifter with integrated LNA , 2005, IEEE Transactions on Microwave Theory and Techniques.

[35]  R. J. Mailloux,et al.  Antenna array architecture , 1992, Proc. IEEE.

[36]  Vahraz Jamnejad,et al.  Array antennas for JPL/NASA Deep Space Network , 2002, Proceedings, IEEE Aerospace Conference.

[37]  David M. Pozar,et al.  Microwave and Rf Design of Wireless Systems , 2000 .

[38]  Y. Mancuso,et al.  T/R- Modules Technological and Technical Trends for Phased Array Antennas , 2006, IMS 2006.

[39]  R. Tayrani,et al.  Broad-band SiGe MMICs for phased-array radar applications , 2003 .

[40]  A. Hajimiri,et al.  A 77GHz Phased-Array Transmitter with Local LO-Path Phase-Shifting in Silicon , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[41]  Brittin C. Kane,et al.  Smart Phased Array SoCs: A Novel Application for Advanced SiGe HBT BiCMOS Technology , 2005, Proceedings of the IEEE.

[42]  S. J. Kim,et al.  A new active phase shifter using a vector sum method , 2000 .

[43]  J.B. Hacker,et al.  MEMS true-time delay circuit for broadband antennas , 2001, IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229).

[44]  F. Ellinger,et al.  Varactor-loaded transmission-line phase shifter at C-band using lumped elements , 2003 .

[45]  E. Sackinger,et al.  Broadband Circuits for Optical Fiber Communication , 2005 .

[46]  B. Razavi,et al.  A 900 MHz/1.8 GHz CMOS receiver for dual band applications , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[47]  A. Dissanayake,et al.  Prospects for commercial satellite services at Q- and V-bands , 1998, IEEE Military Communications Conference. Proceedings. MILCOM 98 (Cat. No.98CH36201).

[48]  T. Itoh,et al.  A compact circularly polarized subdivided microstrip patch antenna , 2002, IEEE Microwave and Wireless Components Letters.

[49]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[50]  J. Y. Choe,et al.  Overview of advanced multifunction RF system (AMRFS) , 2000, Proceedings 2000 IEEE International Conference on Phased Array Systems and Technology (Cat. No.00TH8510).

[51]  B. A. Kopp,et al.  X-band transmit/receive module overview , 2000, 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017).

[52]  Ali Hajimiri,et al.  Distributed active transformer-a new power-combining and impedance-transformation technique , 2002 .

[53]  William P. Delaney,et al.  The Development of Phased-Array Radar Technology , 2000 .

[54]  H. Sato,et al.  A 1.9 GHz single-chip IF transceiver for digital cordless phones , 1996, 1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC.

[55]  Asad A. Abidi,et al.  CMOS mixers and polyphase filters for large image rejection , 2001, IEEE J. Solid State Circuits.

[56]  Charles F. Campbell,et al.  A compact 5-bit phase shifter MMIC for K-band satellite communication systems , 2000, 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017).

[57]  B. A. Kopp,et al.  Transmit/receive modules , 2002 .

[58]  Gabriel M. Rebeiz,et al.  0.13-$\mu$m CMOS Phase Shifters for X-, Ku-, and K-Band Phased Arrays , 2007, IEEE Journal of Solid-State Circuits.

[59]  F. L. Opp,et al.  Design of Digital Loaded-Line Phase-Shift Networks for Microwave Thin-Film Applications , 1968 .

[60]  S. Konaka,et al.  GHz Band Monolithic Modem ICs , 1987, 1987 IEEE MTT-S International Microwave Symposium Digest.

[61]  Donald B. Sinclair,et al.  A single-ended push-pull audio amplifier , 1950 .

[62]  F. Ellinger,et al.  Ultracompact reflective-type phase shifter MMIC at C-band with 360° phase-control range for smart antenna combining , 2002, IEEE J. Solid State Circuits.

[63]  M. Borremans,et al.  A CMOS dual channel, 100 MHz-1.1 GHz transmitter for cable applications , 1999, 1999 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC. First Edition (Cat. No.99CH36278).

[64]  D. Parker,et al.  Phased arrays - part 1: theory and architectures , 2002 .

[65]  David Gesbert,et al.  Smart antennas for broadband wireless access networks , 1999, IEEE Commun. Mag..

[66]  V. Fusco,et al.  Mechanical beam scanning reflectarray , 2005, IEEE Transactions on Antennas and Propagation.

[67]  Yuan Taur,et al.  Fundamentals of Modern VLSI Devices , 1998 .

[68]  Gabriel M. Rebeiz,et al.  A W-band dielectric-lens-based integrated monopulse radar receiver , 1998, IMS 1998.

[69]  J. White,et al.  Diode Phase Shifters for Array Antennas , 1974 .