Optimization of Membrane Electrode Assembly of PEM Fuel Cell by Response Surface Method

The membrane electrode assembly (MEA) plays an important role in the proton exchange membrane fuel cell (PEMFC) performance. Typically, the structure comprises of a polymer electrolyte membrane sandwiched by agglomerate catalyst layers at the anode and cathode. Optimization of various parameters in the design of MEA is, thus, essential for reducing cost and material usage, while improving cell performance. In this paper, optimization of MEA is performed using a validated two-phase PEMFC numerical model. Key MEA parameters affecting the performance of a single PEMFC are determined from sensitivity analysis and are optimized using the response surface method (RSM). The optimization is carried out at two different operating voltages. The results show that membrane thickness and membrane protonic conductivity coefficient are the most significant parameters influencing cell performance. Notably, at higher voltage (0.8 V per cell), the current density can be improved by up to 40% while, at a lower voltage (0.6 V per cell), the current density may be doubled. The results presented can be of importance for fuel cell engineers to improve the stack performance and expedite the commercialization.

[1]  J. Barrett,et al.  Growth rates for liquid drops , 1988 .

[2]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[3]  B. M. Suleiman,et al.  Dynamic plane source technique for simultaneous determination of specific heat, thermal conductivity and thermal diffusivity of metallic samples , 1991 .

[4]  A. Parthasarathy,et al.  Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at the Platinum/Nafion® Interface—A Microelectrode Investigation , 1992 .

[5]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[6]  A. A. Kulikovsky,et al.  Modeling the Cathode Compartment of Polymer Electrolyte Fuel Cells: Dead and Active Reaction Zones , 1999 .

[7]  Chao-Yang Wang,et al.  Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells , 2000 .

[8]  Michael Vynnycky,et al.  Reduced Two-Dimensional One-Phase Model for Analysis of the Anode of a DMFC , 2003 .

[9]  Lin Wang,et al.  A parametric study of PEM fuel cell performances , 2003 .

[10]  Tae-Hee Lee,et al.  A study on the characteristics of the diffusion layer thickness and porosity of the PEMFC , 2004 .

[11]  Y. M. Ferng,et al.  Analytical and experimental investigations of a proton exchange membrane fuel cell , 2004 .

[12]  James M. Fenton,et al.  Operation of Nafion®-based PEM fuel cells with no external humidification: influence of operating conditions and gas diffusion layers , 2004 .

[13]  Michael Vynnycky,et al.  A Two‐Phase Non‐Isothermal PEFC Model: Theory and Validation , 2004 .

[14]  K. M. Chittajallu,et al.  Design and optimization of polymer electrolyte membrane (PEM) fuel cells , 2004 .

[15]  Andy J. Keane,et al.  Computational Approaches for Aerospace Design: The Pursuit of Excellence , 2005 .

[16]  Hyunchul Ju,et al.  Nonisothermal Modeling of Polymer Electrolyte Fuel Cells I. Experimental Validation , 2005 .

[17]  Chaoyang Wang,et al.  Nonisothermal Modeling of Polymer Electrolyte Fuel Cells II. Parametric Study of Low-Humidity Operation , 2006 .

[18]  Weilin Zhuge,et al.  Numerical simulation of a mini PEMFC stack , 2006 .

[19]  Junxiao Wu,et al.  Toward the optimization of operating conditions for hydrogen polymer electrolyte fuel cells , 2006 .

[20]  Chao-Yang Wang,et al.  A Nonisothermal, Two-Phase Model for Polymer Electrolyte Fuel Cells , 2006 .

[21]  Biswa R. Padhy,et al.  Performance of DMFC with SS 316 bipolar/end plates , 2006 .

[22]  Soosan Rowshanzamir,et al.  Effects of operating parameters on performance of a proton exchange membrane fuel cell , 2006 .

[23]  W. Yan,et al.  Effects of operating conditions on cell performance of PEM fuel cells with conventional or interdigitated flow field , 2006 .

[24]  Massimo Santarelli,et al.  Experimental analysis of the effects of the operating variables on the performance of a single PEMFC , 2007 .

[25]  Afzal Suleman,et al.  Multi-variable optimization of PEMFC cathodes using an agglomerate model , 2007 .

[26]  Woonki Na,et al.  The efficient and economic design of PEM fuel cell systems by multi-objective optimization , 2007 .

[27]  Raghunathan Rengaswamy,et al.  A two-dimensional steady state model including the effect of liquid water for a PEM fuel cell cathode , 2007 .

[28]  M. Bezerra,et al.  Response surface methodology (RSM) as a tool for optimization in analytical chemistry. , 2008, Talanta.

[29]  Jon G. Pharoah,et al.  A comparison of different approaches to modelling the PEMFC catalyst layer , 2008 .

[30]  Serdar Erkan,et al.  Effects of membrane electrode assembly components on proton exchange membrane fuel cell performance , 2008 .

[31]  Haralambos Sarimveis,et al.  Development of a novel computational tool for optimizing the operation of fuel cells systems: Application for phosphoric acid fuel cells , 2008 .

[32]  M. Han,et al.  Characterization of gas diffusion layers for PEMFC , 2008 .

[33]  Brian Straughan,et al.  Convection in Porous Media , 2008 .

[34]  Michael Vynnycky,et al.  Validated Reduction and Accelerated Numerical Computation of a Model for the Proton Exchange Membrane Fuel Cell , 2009 .

[35]  Xianguo Li,et al.  On the modeling of water transport in polymer electrolyte membrane fuel cells , 2009 .

[36]  A. Singh,et al.  Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. , 2011, Journal of hazardous materials.

[37]  Arun S. Mujumdar,et al.  Numerical Investigation of Liquid Water Cooling for a Proton Exchange Membrane Fuel Cell Stack , 2011 .

[38]  D. Xuan,et al.  Optimization of PEM Fuel Cell systems with RSM , 2011 .

[39]  G. F. Silva,et al.  Application of response surface methodology for optimization of biodiesel production by transesterification of soybean oil with ethanol , 2011 .

[40]  B. Hameed,et al.  Optimized waste tea activated carbon for adsorption of Methylene Blue and Acid Blue 29 dyes using response surface methodology , 2011 .

[41]  Joonsoo Bae,et al.  Optimization of operating parameters for liquid-cooled PEM fuel cell stacks using Taguchi method , 2012 .

[42]  P. Karthikeyan,et al.  Optimization of Operating and Design Parameters on Proton Exchange Membrane Fuel Cell by using Taguchi method , 2013 .

[43]  K. R. Milkey,et al.  Comparison between Taguchi Method and Response Surface Methodology (RSM) in Modelling CO2 Laser Machining , 2014 .

[44]  Václav Klika,et al.  A Guide through Available Mixture Theories for Applications , 2014 .

[45]  Mehrzad Shams,et al.  Model development and optimization of operating conditions to maximize PEMFC performance by response surface methodology , 2015 .

[46]  D. Stolten,et al.  Modellierung und Untersuchung von Flutungsphänomenen in Niedertemperatur-PEM-Brennstoffzellen , 2015 .

[47]  Alfredo Iranzo,et al.  Optimization of a PEM fuel cell operating conditions: Obtaining the maximum performance polarization curve , 2016 .

[48]  Arun S. Mujumdar,et al.  Optimization of an open-cathode polymer electrolyte fuel cells stack utilizing Taguchi method , 2017 .

[49]  Guobin Zhang,et al.  Characteristics of PEMFC operating at high current density with low external humidification , 2017 .

[50]  J. Benziger,et al.  Non-equilibrium thermodynamic model of water sorption in Nafion membranes , 2017 .

[51]  K. Jiao,et al.  Sensitivity analysis of uncertain parameters based on an improved proton exchange membrane fuel cell analytical model , 2018 .

[52]  F. Cui,et al.  Ultrasound-Assisted Extraction of Polysaccharides from Volvariella volvacea: Process Optimization and Structural Characterization , 2018, Molecules.

[53]  Wei Guo,et al.  Optimization of critical parameters of PEM fuel cell using TLBO-DE based on Elman neural network , 2019, Energy Conversion and Management.

[54]  Alberto Pizzolato,et al.  Topology optimization as a powerful tool to design advanced PEMFCs flow fields , 2019, International Journal of Heat and Mass Transfer.

[55]  Elena Carcadea,et al.  Influence of catalyst structure on PEM fuel cell performance – A numerical investigation , 2019, International Journal of Hydrogen Energy.

[56]  P. Nomngongo,et al.  Application of Response Surface Methodology and Desirability Function in the Optimization of Adsorptive Remediation of Arsenic from Acid Mine Drainage Using Magnetic Nanocomposite: Equilibrium Studies and Application to Real Samples , 2019, Molecules.

[57]  Xiudong Yang,et al.  Flavonoids from Morus alba L. Leaves: Optimization of Extraction by Response Surface Methodology and Comprehensive Evaluation of Their Antioxidant, Antimicrobial, and Inhibition of α-Amylase Activities through Analytical Hierarchy Process , 2019, Molecules.

[58]  Farschad Torabi,et al.  Comprehensive comparative evaluation of different possible optimization scenarios for a polymer electrolyte membrane fuel cell , 2019, Energy Conversion and Management.