Morphological and physiological retinal degeneration induced by intravenous delivery of vitamin A dimers in rabbits

The eye uses vitamin A as a cofactor to sense light and, during this process, some vitamin A molecules dimerize, forming vitamin A dimers. A striking chemical signature of retinas undergoing degeneration in major eye diseases such as age-related macular degeneration (AMD) and Stargardt disease is the accumulation of these dimers in the retinal pigment epithelium (RPE) and Bruch’s membrane (BM). However, it is not known whether dimers of vitamin A are secondary symptoms or primary insults that drive degeneration. Here, we present a chromatography-free method to prepare gram quantities of the vitamin A dimer, A2E, and show that intravenous administration of A2E to the rabbit results in retinal degeneration. A2E-damaged photoreceptors and RPE cells triggered inflammation, induced remolding of the choroidal vasculature and triggered a decline in the retina’s response to light. Data suggest that vitamin A dimers are not bystanders, but can be primary drivers of retinal degeneration. Thus, preventing dimer formation could be a preemptive strategy to address serious forms of blindness.

[1]  D. Mihai,et al.  Vitamin A dimers trigger the protracted death of retinal pigment epithelium cells , 2014, Cell Death and Disease.

[2]  C. Curcio,et al.  Cholesterol in the retina: The best is yet to come , 2014, Progress in Retinal and Eye Research.

[3]  F. Maxfield,et al.  Beta cyclodextrins bind, stabilize, and remove lipofuscin bisretinoids from retinal pigment epithelium , 2014, Proceedings of the National Academy of Sciences.

[4]  E. Gaillard,et al.  A2E‐Mediated Photochemical Modification to Fibronectin and its Implications to Age‐Related Changes in Bruch's Membrane , 2014, Photochemistry and photobiology.

[5]  D. Bok,et al.  Bisretinoid-mediated Complement Activation on Retinal Pigment Epithelial Cells Is Dependent on Complement Factor H Haplotype* , 2014, The Journal of Biological Chemistry.

[6]  M. Jager Macrophages and Macular Degeneration , 2014, Journal of ophthalmic & vision research.

[7]  J. Olsen,et al.  Early changes in gene expression induced by blue light irradiation of A2E‐laden retinal pigment epithelial cells , 2013, Acta ophthalmologica.

[8]  D. Shima,et al.  A2E Induces IL-1ß Production in Retinal Pigment Epithelial Cells via the NLRP3 Inflammasome , 2013, PloS one.

[9]  A. Salminen,et al.  Autophagy and heterophagy dysregulation leads to retinal pigment epithelium dysfunction and development of age-related macular degeneration , 2013, Autophagy.

[10]  W. Wong,et al.  A2E accumulation influences retinal microglial activation and complement regulation , 2013, Neurobiology of Aging.

[11]  J. Nowak Oxidative stress, polyunsaturated fatty acids-derived oxidation products and bisretinoids as potential inducers of CNS diseases: focus on age-related macular degeneration , 2013, Pharmacological reports : PR.

[12]  U. Schraermeyer,et al.  Lipofuscin can be eliminated from the retinal pigment epithelium of monkeys , 2012, Neurobiology of Aging.

[13]  J. Sparrow,et al.  A Novel Source of Methylglyoxal and Glyoxal in Retina: Implications for Age-Related Macular Degeneration , 2012, PloS one.

[14]  Christine A Curcio,et al.  The oil spill in ageing Bruch membrane , 2011, British Journal of Ophthalmology.

[15]  J. Sparrow,et al.  Photo-products of retinal pigment epithelial bisretinoids react with cellular thiols , 2011, Molecular vision.

[16]  Junhua Zhang,et al.  C20-D3-vitamin A Slows Lipofuscin Accumulation and Electrophysiological Retinal Degeneration in a Mouse Model of Stargardt Disease* , 2010, The Journal of Biological Chemistry.

[17]  C. Nordgaard,et al.  Mitochondrial DNA damage as a potential mechanism for age-related macular degeneration. , 2010, Investigative ophthalmology & visual science.

[18]  K. Tomer,et al.  Blue light induced A2E oxidation in rat eyes — experimental animal model of dry AMD , 2010, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[19]  Ying Chen,et al.  Inhibition of the visual cycle by A2E through direct interaction with RPE65 and implications in Stargardt disease , 2010, Proceedings of the National Academy of Sciences.

[20]  L. S. Murdaugh,et al.  Age-related accumulation of 3-nitrotyrosine and nitro-A2E in human Bruch's membrane. , 2010, Experimental eye research.

[21]  M. Siegel,et al.  Structural characterization of bisretinoid A2E photocleavage products and implications for age-related macular degeneration , 2010, Proceedings of the National Academy of Sciences.

[22]  C. Curcio,et al.  Aging, age-related macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins , 2009, Progress in Retinal and Eye Research.

[23]  S. Bressler Introduction: Understanding the role of angiogenesis and antiangiogenic agents in age-related macular degeneration. , 2009, Ophthalmology.

[24]  Anand Swaroop,et al.  Unraveling a multifactorial late-onset disease: from genetic susceptibility to disease mechanisms for age-related macular degeneration. , 2009, Annual review of genomics and human genetics.

[25]  W. Jang,et al.  A2E, a component of lipofuscin, is pro‐angiogenic in vivo , 2009, Journal of cellular physiology.

[26]  E. Gaillard,et al.  Modifications to the basement membrane protein laminin using glycolaldehyde and A2E: a model for aging in Bruch's membrane. , 2009, Experimental eye research.

[27]  A. Augustin,et al.  Inflammation and the pathogenesis of age-related macular degeneration , 2009, Expert opinion on therapeutic targets.

[28]  M. Ostrovsky,et al.  Light-induced release of A2E photooxidation toxic products from lipofuscin granules of human retinal pigment epithelium , 2009, Doklady Biochemistry and Biophysics.

[29]  Junping Gao,et al.  The Age Lipid A2E and Mitochondrial Dysfunction Synergistically Impair Phagocytosis by Retinal Pigment Epithelial Cells* , 2008, Journal of Biological Chemistry.

[30]  S. Kato,et al.  A2E, a Pigment of the Lipofuscin of Retinal Pigment Epithelial Cells, Is an Endogenous Ligand for Retinoic Acid Receptor* , 2008, Journal of Biological Chemistry.

[31]  G. Abecasis,et al.  Inflammation in the pathogenesis of age-related macular degeneration , 2008, British Journal of Ophthalmology.

[32]  S. Jockusch,et al.  Chlorophyll derivatives as visual pigments for super vision in the red , 2007, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[33]  E. Rodriguez-Boulan,et al.  The lipofuscin fluorophore A2E perturbs cholesterol metabolism in retinal pigment epithelial cells , 2007, Proceedings of the National Academy of Sciences.

[34]  E. B. Rodrigues,et al.  Inflammation in Dry Age-Related Macular Degeneration , 2007, Ophthalmologica.

[35]  E. A. Sokolenko,et al.  Interaction of pyridinium bis-retinoid (A2E) with bilayer lipid membranes. , 2007, Journal of photochemistry and photobiology. B, Biology.

[36]  Y. Jang,et al.  Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium , 2006, Proceedings of the National Academy of Sciences.

[37]  E. Gaillard,et al.  Oxidation of A2E Results in the Formation of Highly Reactive Aldehydes and Ketones , 2006, Photochemistry and photobiology.

[38]  G. R. Jackson,et al.  Impact of aging and age-related maculopathy on inactivation of the a-wave of the rod-mediated electroretinogram , 2006, Vision Research.

[39]  P. Mukherjee,et al.  A2E Selectively Induces COX-2 in ARPE-19 and Human Neural Cells , 2006, Current eye research.

[40]  M. Cid,et al.  Convergent stereoselective synthesis of the visual pigment A2E. , 2005, Organic letters.

[41]  S. Jockusch,et al.  Superoxidation of bisretinoids. , 2005, Angewandte Chemie.

[42]  E. Ng,et al.  Targeting angiogenesis, the underlying disorder in neovascular age-related macular degeneration. , 2005, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[43]  G. R. Jackson,et al.  Impact of aging and age-related maculopathy on activation of the a-wave of the rod-mediated electroretinogram. , 2004, Investigative ophthalmology & visual science.

[44]  R. Radu,et al.  Light exposure stimulates formation of A2E oxiranes in a mouse model of Stargardt's macular degeneration. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[45]  E. Gaillard,et al.  Observation of A2E oxidation products in human retinal lipofuscin. , 2004, Experimental eye research.

[46]  Richard F Spaide,et al.  CHOROIDAL NEOVASCULARIZATION IN AGE-RELATED MACULAR DEGENERATION—WHAT IS THE CAUSE? , 2003, Retina.

[47]  S. Jockusch,et al.  A2E-epoxides Damage DNA in Retinal Pigment Epithelial Cells , 2003, The Journal of Biological Chemistry.

[48]  J. Sparrow,et al.  DNA is a target of the photodynamic effects elicited in A2E-laden RPE by blue-light illumination. , 2003, Investigative ophthalmology & visual science.

[49]  C. Richter,et al.  Singlet-oxygen Generation from A2E¶ , 2003, Photochemistry and photobiology.

[50]  Gui-Shuang Ying,et al.  The role of apoptosis in age-related macular degeneration. , 2002, Archives of ophthalmology.

[51]  L. D. Del Priore,et al.  Age-related changes in human RPE cell density and apoptosis proportion in situ. , 2002, Investigative ophthalmology & visual science.

[52]  T. Sakmar,et al.  Interaction of A2E with Model Membranes. Implications to the Pathogenesis of Age-related Macular Degeneration , 2002, The Journal of general physiology.

[53]  Koji Nakanishi,et al.  Involvement of oxidative mechanisms in blue-light-induced damage to A2E-laden RPE. , 2002, Investigative ophthalmology & visual science.

[54]  E. Rodriguez-Boulan,et al.  The lipofuscin component A2E selectively inhibits phagolysosomal degradation of photoreceptor phospholipid by the retinal pigment epithelium , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[55]  S. Jockusch,et al.  Formation of a nonaoxirane from A2E, a lipofuscin fluorophore related to macular degeneration, and evidence of singlet oxygen involvement. , 2002, Angewandte Chemie.

[56]  K. Nakanishi,et al.  Biosynthetic Studies of A2E, a Major Fluorophore of Retinal Pigment Epithelial Lipofuscin* , 2002, The Journal of Biological Chemistry.

[57]  D. Hu,et al.  The Role of A2E in Prevention or Enhancement of Light Damage in Human Retinal Pigment Epithelial Cells¶ , 2002, Photochemistry and photobiology.

[58]  G. R. Jackson,et al.  Delays in rod-mediated dark adaptation in early age-related maculopathy. , 2001, Ophthalmology.

[59]  J. Sparrow,et al.  Blue light-induced apoptosis of A2E-containing RPE: involvement of caspase-3 and protection by Bcl-2. , 2001, Investigative ophthalmology & visual science.

[60]  J. Kopitz,et al.  Does A2E, a retinoid component of lipofuscin and inhibitor of lysosomal degradative functions, directly affect the activity of lysosomal hydrolases? , 2001, Experimental eye research.

[61]  K. Nakanishi,et al.  The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. , 2000, Investigative ophthalmology & visual science.

[62]  Katsunori Tanaka,et al.  Novel synthesis of the ocular age pigment A2-E: new method for substituted pyridine synthesis via azaelectrocyclization. , 2000, Organic letters.

[63]  F. Holz,et al.  Einschleusung des Lipofuszin-Fluorophors A2-E in das lysosomale Kompartiment humaner retinaler Pigmentepithelzellen durch Kopplung an LDL-Partikel , 1999, Der Ophthalmologe.

[64]  J. Kopitz,et al.  [Introduction of the lipofuscin-fluorophor A2E into the lysosomal compartment of human retinal pigment epithelial cells by coupling to LDL particles. An in vitro model of retinal pigment epithelium cell aging]. , 1999, Der Ophthalmologe.

[65]  R. Widder,et al.  Electrophysiological abnormalities in age-related macular degeneration , 1999, Graefe's Archive for Clinical and Experimental Ophthalmology.

[66]  Cynthia Owsley,et al.  Aging and dark adaptation , 1999, Vision Research.

[67]  K. Nakanishi,et al.  A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. , 1999, Investigative ophthalmology & visual science.

[68]  K. Nakanishi,et al.  Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[69]  A. Harman,et al.  Development and aging of cell topography in the human retinal pigment epithelium. , 1997, Investigative ophthalmology & visual science.

[70]  K. Nakanishi,et al.  Total Synthesis of the Ocular Age Pigment A2-E: A Convergent Pathway , 1997 .

[71]  P. D. de Jong,et al.  Morphologic changes in age‐related maculopathy , 1997, Microscopy research and technique.

[72]  J. Jonas,et al.  Retinal pigment epithelial cell count, distribution, and correlations in normal human eyes. , 1996, American journal of ophthalmology.

[73]  S. Seregard,et al.  Immunohistochemical characterization of surgically removed subfoveal fibrovascular membranes , 1994, Graefe's Archive for Clinical and Experimental Ophthalmology.

[74]  C. Curcio,et al.  Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina. , 1993, Investigative ophthalmology & visual science.

[75]  G. Eldred,et al.  Retinal age pigments generated by self-assembling lysosomotropic detergents , 1993, Nature.

[76]  S. Molotchnikoff,et al.  The effect of iodoacetic acid on the electroretinogram and oscillatory potentials in rabbits , 1990, Documenta Ophthalmologica.

[77]  J. Savory,et al.  Normal biochemical and hematological values in New Zealand white rabbits. , 1989, Clinical chemistry.

[78]  M. Killingsworth,et al.  Evolution of geographic atrophy of the retinal pigment epithelium , 1988, Eye.

[79]  D. Jones,et al.  Mac 387 antibody and detection of formalin resistant myelomonocytic L1 antigen. , 1988, Journal of clinical pathology.

[80]  M. Katz,et al.  Fluorophores of the human retinal pigment epithelium: separation and spectral characterization. , 1988, Experimental eye research.

[81]  P. Campochiaro,et al.  Photocoagulation does not ablate angiogenic markers in rabbit retina. , 1988, Archives of ophthalmology.

[82]  R W Young,et al.  Pathophysiology of age-related macular degeneration. , 1987, Survey of ophthalmology.

[83]  A. R. Pilkerton,et al.  The effects of iodate and iodoacetate on the retinal adhesion. , 1980, Investigative ophthalmology & visual science.

[84]  E. Friedman,et al.  The retinal pigment epithelium. I. Comparative histology. , 1967 .

[85]  W. Muller-Limmroth,et al.  [Origin of the electroretinogram. I]. , 1958, Zeitschrift fur Biologie.

[86]  A. Sorsby EXPERIMENTAL PIGMENTARY DEGENERATION OF THE RETINA BY SODIUM IODATE , 1941, The British journal of ophthalmology.

[87]  J. Sparrow Bisretinoids of RPE lipofuscin: trigger for complement activation in age-related macular degeneration. , 2010, Advances in experimental medicine and biology.

[88]  L. Govindasamy,et al.  The lipofuscin fluorophore A 2 E perturbs cholesterol metabolism in retinal pigment epithelial cells , 2008 .

[89]  J. C. Low The corneal ERG of the heterozygous retinal degeneration mouse , 2006, Graefe's Archive for Clinical and Experimental Ophthalmology.

[90]  K. Nakanishi,et al.  A2E, a fluorophore of RPE lipofuscin, can destabilize membrane. , 2006, Advances in experimental medicine and biology.

[91]  Irina Klimanskaya,et al.  Retinal pigment epithelium. , 2006, Methods in enzymology.

[92]  T. Sakmar,et al.  Interaction of A 2 E with Model Membranes . Implications to the Pathogenesis of Age-related Macular Degeneration , 2002 .

[93]  K. Nakanishi,et al.  A 2 E , a Lipofuscin Fluorophore , in Human Retinal Pigmented Epithelial Cells in Culture , 1999 .

[94]  Koji Nakanishi,et al.  Ocular Age Pigment "A2-E": An Unprecedented Pyridinium Bisretinoid , 1996 .

[95]  G. Eldred Lipofuscin fluorophore inhibits lysosomal protein degradation and may cause early stages of macular degeneration. , 1995, Gerontology.

[96]  H. Gao,et al.  Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. , 1992, Investigative ophthalmology & visual science.

[97]  M. Killingsworth,et al.  Macrophages related to Bruch's membrane in age-related macular degeneration , 1990, Eye.

[98]  S. Ryan,et al.  The development of an experimental model of subretinal neovascularization in disciform macular degeneration. , 1979, Transactions of the American Ophthalmological Society.

[99]  M. Marmor,et al.  The Retinal pigment epithelium , 1979 .