When Rank-One Convexity Meets Polyconvexity: An Algebraic Approach to Elastic Binodal

In the variational problems involving non-convex integral functionals, finding the binodal, the boundary of validity of the quasiconvexity of the energy density, is of central importance. We develop a systematic methodology for identifying a part of the binodal corresponding to simple laminates by showing that in this case the supporting null-Lagrangians, establishing polyconvexity, can be constructed explicitly. We present a nontrivial example from nonlinear elasticity where this approach allows one to obtain the entire quasiconvex envelope.

[1]  John M. Ball,et al.  Regularity of quasiconvex envelopes , 2000 .

[2]  Maxwell’s Relation for Isotropic Bodies , 2005 .

[3]  J. Kánnár On the existence of C∞ solutions to the asymptotic characteristic initial value problem in general relativity , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  Jörg Schröder,et al.  Poly-, quasi- and rank-one convexity in applied mechanics , 2010 .

[5]  Y. Grabovsky Bounds and extremal microstructures for two-component composites: a unified treatment based on the translation method , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  J. Ericksen,et al.  Nilpotent energies in liquid crystal theory , 1962 .

[7]  Phase transformations surfaces and exact energy lower bounds , 2015, 1510.06080.

[8]  A. l. Leçons sur la Propagation des Ondes et les Équations de l'Hydrodynamique , 1904, Nature.

[9]  Jan Kristensen ON CONDITIONS FOR POLYCONVEXITY , 1999 .

[10]  Yury Grabovsky,et al.  Normality Condition in Elasticity , 2014, J. Nonlinear Sci..

[11]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[12]  V. Kucher,et al.  Computation of the Second Variation of the Energy Functional of a Two-Phase Medium , 2001 .

[13]  R. Abeyaratne,et al.  Dilatationally nonlinear elastic materials—I. Some theory , 1989 .

[14]  R. Kohn,et al.  Structural design optimization, homogenization and relaxation of variational problems , 1982 .

[15]  N. Osmolovskii,et al.  Quadratic Extremality Conditions for Broken Extremals in the General Problem of the Calculus of Variations , 2004 .

[16]  Kaushik Bhattacharya,et al.  The Relaxation of Two-well Energies with Possibly Unequal Moduli , 2008 .

[17]  Richard D. James,et al.  Finite deformation by mechanical twinning , 1981 .

[18]  N. Meyers QUASI-CONVEX1TY AND LOWER SEMI-CONTINUITY OF MULTIPLE VARIATIONAL INTEGRALS OF ANY ORDER , 2010 .

[19]  Georg Dolzmann,et al.  Numerical Computation of Rank-One Convex Envelopes , 1999 .

[20]  Charles B. Morrey,et al.  QUASI-CONVEXITY AND THE LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS , 1952 .

[21]  M. Giaquinta,et al.  The Hamiltonian formalism , 1996 .

[22]  Jan Kristensen,et al.  On the non-locality of quasiconvexity , 1999 .

[23]  John W. Hutchinson,et al.  Continuum theory of dilatant transformation toughening in ceramics , 1983 .

[24]  Graeme W. Milton,et al.  Theory of Composites. Cambridge Monographs on Applied and Computational Mathematics , 2003 .

[25]  Dominic G. B. Edelen The null set of the Euler-Lagrange operator , 1962 .

[26]  G. Milton The Theory of Composites , 2002 .

[27]  Linearisation of multiwell energies , 2017 .

[28]  V. Agostiniani,et al.  From nonlinear to linearized elasticity via Γ-convergence: The case of multiwell energies satisfying weak coercivity conditions , 2013, 1308.3994.

[29]  L. Young Lectures on the Calculus of Variations and Optimal Control Theory , 1980 .

[30]  Adam M. Oberman,et al.  A Partial Differential Equation for the Rank One Convex Envelope , 2016, 1605.03155.

[31]  Clifford Ambrose Truesdell,et al.  The mechanical foundations of elasticity and fluid dynamics , 1952 .

[32]  R. Bellman Calculus of Variations (L. E. Elsgolc) , 1963 .

[33]  Robert V. Kohn,et al.  The relaxation of a double-well energy , 1991 .

[34]  Bernard Dacorogna,et al.  Quasiconvexity and relaxation of nonconvex problems in the calculus of variations , 1982 .

[35]  Miroslav Šilhavý,et al.  The Mechanics and Thermodynamics of Continuous Media , 2002 .

[36]  J. D. Eshelby Energy Relations and the Energy-Momentum Tensor in Continuum Mechanics , 1999 .

[37]  F. John Plane elastic waves of finite amplitude. Hadamard materials and harmonic materials , 1966 .

[38]  Andrej Cherkaev,et al.  Regularization of optimal design problems for bars and plates, part 2 , 1982 .

[39]  R. D. James,et al.  Proposed experimental tests of a theory of fine microstructure and the two-well problem , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[40]  Yury Grabovsky,et al.  Marginal Material Stability , 2013, J. Nonlinear Sci..

[41]  L. Tartar,et al.  Estimation de Coefficients Homogenises , 1979 .

[42]  Yury Grabovsky,et al.  Legendre-Hadamard Conditions for Two-Phase Configurations , 2016 .

[43]  Y. Grabovsky,et al.  Roughening Instability of Broken Extremals , 2011 .

[44]  J. Ericksen,et al.  Equilibrium of bars , 1975 .

[45]  B. Schmidt Linear Γ-limits of multiwell energies in nonlinear elasticity theory , 2008 .

[46]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[47]  Morton E. Gurtin,et al.  Two-phase deformations of elastic solids , 1983 .