A sixth‐order compact finite difference method for the one‐dimensional sine‐Gordon equation

This paper explores the utility of a sixth-order compact finite difference (CFD6) scheme for the solution of the sine-Gordon equation. The CFD6 scheme in space and a third-order strong stability preserving Runge–Kutta scheme in time have been combined for solving the equation. This scheme needs less storage space, as opposed to the conventional numerical methods, and causes to less accumulation of numerical errors. The scheme is implemented to solve three test problems having exact solutions. Comparisons of the computed results with exact solutions showed that the method is capable of achieving high accuracy with minimal computational effort. The present results are also seen to be more accurate than some available results given in the literature. The scheme is seen to be a very reliable alternative technique to existing ones. Copyright © 2009 John Wiley & Sons, Ltd.

[1]  Bin Wang,et al.  High-order multi-symplectic schemes for the nonlinear Klein-Gordon equation , 2005, Appl. Math. Comput..

[2]  Mark J. Ablowitz,et al.  On the Numerical Solution of the Sine-Gordon Equation , 1996 .

[3]  Murat Sari,et al.  Solution of the Porous Media Equation by a Compact Finite Difference Method , 2009 .

[4]  John Argyris,et al.  Finite element approximation to two-dimensional sine-Gordon solitons , 1991 .

[5]  S. Y. Lou,et al.  New quasi-periodic waves of the (2+1)-dimensional sine-Gordon system [rapid communication] , 2005 .

[6]  Mark J. Ablowitz,et al.  Regular ArticleOn the Numerical Solution of the Sine–Gordon Equation: I. Integrable Discretizations and Homoclinic Manifolds , 1996 .

[7]  Guo-Wei Wei,et al.  Discrete singular convolution for the sine-Gordon equation , 2000 .

[8]  L. Vázquez,et al.  Numerical solution of the sine-Gordon equation , 1986 .

[9]  Mohd. Salmi Md. Noorani,et al.  Numerical solution of sine-Gordon equation by variational iteration method , 2007 .

[10]  Z. Fei,et al.  Two energy conserving numerical schemes for the Sine-Gordon equation , 1991 .

[11]  Murat Sari,et al.  A sixth-order compact finite difference scheme to the numerical solutions of Burgers' equation , 2009, Appl. Math. Comput..

[12]  Abdul-Majid Wazwaz,et al.  The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations , 2005, Appl. Math. Comput..

[13]  Mark J. Ablowitz,et al.  Numerical simulation of quasi-periodic solutions of the sine-Gordon equation , 1995 .

[14]  J. Xin,et al.  Modeling light bullets with the two-dimensional sine—Gordon equation , 2000 .

[15]  Risaburo Sato,et al.  Numerical analysis of vortex motion on Josephson structures , 1974 .

[16]  John Argyris,et al.  An engineer's guide to soliton phenomena: Application of the finite element method , 1987 .

[17]  Ugur Yücel,et al.  Homotopy analysis method for the sine-Gordon equation with initial conditions , 2008, Appl. Math. Comput..

[18]  J. Eilbeck Numerical Studies of Solitons , 1978 .

[19]  Ryogo Hirota,et al.  Exact Three-Soliton Solution of the Two-Dimensional Sine-Gordon Equation , 1973 .

[20]  J. Perring,et al.  A Model unified field equation , 1962 .

[21]  A. G. Bratsos An explicit numerical scheme for the Sine‐Gordon equation in 2+1 dimensions , 2005 .

[22]  J. Zagrodziński,et al.  Particular solutions of the sine-Gordon equation in 2 + 1 dimensions , 1979 .

[23]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[24]  Athanassios G. Bratsos,et al.  A fourth order numerical scheme for the one-dimensional sine-Gordon equation , 2008, Int. J. Comput. Math..

[25]  Miguel R. Visbal,et al.  High-Order Schemes for Navier-Stokes Equations: Algorithm and Implementation Into FDL3DI , 1998 .

[26]  Jun Zhang,et al.  High order ADI method for solving unsteady convection-diffusion problems , 2004 .

[27]  Salah M. El-Sayed,et al.  The decomposition method for studying the Klein–Gordon equation , 2003 .

[28]  Murat Sari,et al.  A compact finite difference method for the solution of the generalized Burgers–Fisher equation , 2010 .

[29]  Mingrong Cui Fourth‐order compact scheme for the one‐dimensional sine‐Gordon equation , 2009 .

[30]  L. Vu-Quoc,et al.  Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .

[31]  George Leibbrandt,et al.  New exact solutions of the classical sine-Gordon equation in 2 + 1 and 3 + 1 dimensions , 1978 .

[32]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[33]  Mark J. Ablowitz,et al.  NUMERICAL HOMOCLINIC INSTABILITIES IN The SINE-GORDON EQUATION , 1992 .

[34]  R. Hirsh,et al.  Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique , 1975 .

[35]  Mehdi Dehghan,et al.  A numerical method for one‐dimensional nonlinear Sine‐Gordon equation using collocation and radial basis functions , 2008 .

[36]  Qin Sheng,et al.  A predictor‐‐corrector scheme for the sine‐Gordon equation , 2000 .

[37]  M. Lakshmanan,et al.  Kadomstev-Petviashvile and two-dimensional sine-Gordon equations: reduction to Painleve transcendents , 1979 .

[38]  Chunxiong Zheng,et al.  Numerical Solution to the Sine-Gordon Equation Defined on the Whole Real Axis , 2007, SIAM J. Sci. Comput..