Picowatt, 0.45–0.6 V Self-Biased Subthreshold CMOS Voltage Reference

In this paper, a self-biased temperature-compensated CMOS voltage reference operating at picowatt-level power consumption is presented. The core of the proposed circuit is the self-cascode MOSFET (SCM) and two variants are explored: a self-biased SCM (SBSCM) and a self-biased NMOS (SBNMOS) voltage reference. Power consumption and silicon area are remarkably reduced by combining subthreshold operation with a self-biased scheme. Trimming techniques for both circuits are discussed aiming at the reduction of the process variations impact. The proposed circuits were fabricated in a standard 0.18- $\mu \text{m}$ CMOS process. Measurement results from 24 samples of the same batch show that both circuits herein proposed can operate at 0.45/0.6 V minimum supply voltage, consuming merely 55/184 pW at room temperature. Temperature coefficient (TC) around 104/495 ppm/°C across a temperature range from 0 to 120 °C was measured. Employment of a trimming scheme allows a reduction of the average TC to 72.4/11.6 ppm/°C for the same temperature range. Both variants of the proposed circuit achieve a line sensitivity of 0.15/0.11 %/V and a power supply rejection better than −44/−45 dB from 10 to 10 kHz. In addition, SBSCM and SBNMOS prototypes occupy a silicon area of 0.002 and 0.0017 mm2, respectively.

[1]  Nobutaka Kuroki,et al.  1.2-V Supply, 100-nW, 1.09-V Bandgap and 0.7-V Supply, 52.5-nW, 0.55-V Subbandgap Reference Circuits for Nanowatt CMOS LSIs , 2013, IEEE Journal of Solid-State Circuits.

[2]  G. Iannaccone,et al.  A Sub-1 V, 10 ppm/°C, Nanopower Voltage Reference Generator , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.

[3]  Sergio Bampi,et al.  A 0.45 V, 93 pW temperature-compensated CMOS voltage reference , 2017, 2017 IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS).

[4]  G. Iannaccone,et al.  A Sub- ${\boldsymbol kT}/\boldsymbol q$ Voltage Reference Operating at 150 mV , 2015, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[5]  Giuseppe Iannaccone,et al.  A sub‐1 V nanopower temperature‐compensated sub‐threshold CMOS voltage reference with 0.065%/V line sensitivity , 2015, Int. J. Circuit Theory Appl..

[6]  Ran Liu,et al.  Nanopower CMOS sub-bandgap reference with 11 ppm/°C temperature coefficient , 2009 .

[7]  Sergio Bampi,et al.  A 0.3 V, high-PSRR, picowatt NMOS-only voltage reference using zero-VT active loads , 2016, 2016 29th Symposium on Integrated Circuits and Systems Design (SBCCI).

[8]  Felice Crupi,et al.  A Sub-kT/q Voltage Reference Operating at 150 mV , 2015, IEEE Trans. Very Large Scale Integr. Syst..

[9]  David Blaauw,et al.  A 114-pW PMOS-only, trim-free voltage reference with 0.26% within-wafer inaccuracy for nW systems , 2016, 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits).

[10]  Sergio Bampi,et al.  A 4-Bits Trimmed CMOS Bandgap Reference with an Improved Matching Modeling Design , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[11]  David Blaauw,et al.  A Subthreshold Voltage Reference With Scalable Output Voltage for Low-Power IoT Systems , 2017, IEEE Journal of Solid-State Circuits.

[12]  David Blaauw,et al.  Energy-Autonomous Wireless Communication for Millimeter-Scale Internet-of-Things Sensor Nodes , 2016, IEEE Journal on Selected Areas in Communications.

[13]  O. Neyroud,et al.  A low-voltage CMOS bandgap reference , 1979, IEEE Journal of Solid-State Circuits.

[14]  David Blaauw,et al.  A 10 mm3 Inductive Coupling Radio for Syringe-Implantable Smart Sensor Nodes , 2016, IEEE Journal of Solid-State Circuits.

[15]  Y. Tsividis Operation and modeling of the MOS transistor , 1987 .

[16]  Carlos Galup-Montoro,et al.  CMOS Analog Design Using All-Region MOSFET Modeling: Fundamentals of integrated continuous-time filters , 2010 .

[17]  Yintang Yang,et al.  A 0.45-V, 14.6-nW CMOS Subthreshold Voltage Reference With No Resistors and No BJTs , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.

[18]  Sergio Bampi,et al.  Resistorless BJT bias and curvature compensation circuit at 3.4 nW for CMOS bandgap voltage references , 2014 .

[19]  Refet Firat Yazicioglu,et al.  A 0.6-V, 0.015-mm2, Time-Based ECG Readout for Ambulatory Applications in 40-nm CMOS , 2017, IEEE Journal of Solid-State Circuits.

[20]  Anantha Chandrakasan,et al.  23.2 A 1.1nW energy harvesting system with 544pW quiescent power for next-generation implants , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[21]  David Blaauw,et al.  A Modular 1 mm$^{3}$ Die-Stacked Sensing Platform With Low Power I$^{2}$C Inter-Die Communication and Multi-Modal Energy Harvesting , 2013, IEEE Journal of Solid-State Circuits.

[22]  Carlos Christoffersen,et al.  Nanopower, Sub-1 V, CMOS Voltage References With Digitally-Trimmable Temperature Coefficients , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[23]  Kofi A. A. Makinwa,et al.  Effects of packaging and process spread on a mobility-based frequency reference in 0.16-μm CMOS , 2011, 2011 Proceedings of the ESSCIRC (ESSCIRC).

[24]  Giuseppe de Vita,et al.  A Sub-1-V, 10 ppm/ $^{\circ}$C, Nanopower Voltage Reference Generator , 2007, IEEE Journal of Solid-State Circuits.

[25]  Giuseppe Iannaccone,et al.  A 2.6 nW, 0.45 V Temperature-Compensated Subthreshold CMOS Voltage Reference , 2011, IEEE Journal of Solid-State Circuits.

[26]  Jin Hu,et al.  A 0.45 V, Nano-Watt 0.033% Line Sensitivity MOSFET-Only Sub-Threshold Voltage Reference With no Amplifiers , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[27]  Anantha P. Chandrakasan,et al.  A 1.1 nW Energy-Harvesting System with 544 pW Quiescent Power for Next-Generation Implants , 2014, IEEE Journal of Solid-State Circuits.

[28]  Sergio Bampi,et al.  0.3 V supply, 17 ppm/°C 3-transistor picowatt voltage reference , 2016, 2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS).

[29]  David Blaauw,et al.  A Portable 2-Transistor Picowatt Temperature-Compensated Voltage Reference Operating at 0.5 V , 2012, IEEE Journal of Solid-State Circuits.

[30]  Changzhi Li,et al.  A 0.7 V Relative Temperature Sensor With a Non-Calibrated $\pm 1~^{\circ}{\rm C}$ 3$\sigma$ Relative Inaccuracy , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.