Picowatt, 0.45–0.6 V Self-Biased Subthreshold CMOS Voltage Reference
暂无分享,去创建一个
Sergio Bampi | Hamilton Klimach | David Cordova | Arthur Campos de Oliveira | S. Bampi | D. Cordova | H. Klimach | Arthur Campos de Oliveira
[1] Nobutaka Kuroki,et al. 1.2-V Supply, 100-nW, 1.09-V Bandgap and 0.7-V Supply, 52.5-nW, 0.55-V Subbandgap Reference Circuits for Nanowatt CMOS LSIs , 2013, IEEE Journal of Solid-State Circuits.
[2] G. Iannaccone,et al. A Sub-1 V, 10 ppm/°C, Nanopower Voltage Reference Generator , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.
[3] Sergio Bampi,et al. A 0.45 V, 93 pW temperature-compensated CMOS voltage reference , 2017, 2017 IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS).
[4] G. Iannaccone,et al. A Sub- ${\boldsymbol kT}/\boldsymbol q$ Voltage Reference Operating at 150 mV , 2015, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.
[5] Giuseppe Iannaccone,et al. A sub‐1 V nanopower temperature‐compensated sub‐threshold CMOS voltage reference with 0.065%/V line sensitivity , 2015, Int. J. Circuit Theory Appl..
[6] Ran Liu,et al. Nanopower CMOS sub-bandgap reference with 11 ppm/°C temperature coefficient , 2009 .
[7] Sergio Bampi,et al. A 0.3 V, high-PSRR, picowatt NMOS-only voltage reference using zero-VT active loads , 2016, 2016 29th Symposium on Integrated Circuits and Systems Design (SBCCI).
[8] Felice Crupi,et al. A Sub-kT/q Voltage Reference Operating at 150 mV , 2015, IEEE Trans. Very Large Scale Integr. Syst..
[9] David Blaauw,et al. A 114-pW PMOS-only, trim-free voltage reference with 0.26% within-wafer inaccuracy for nW systems , 2016, 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits).
[10] Sergio Bampi,et al. A 4-Bits Trimmed CMOS Bandgap Reference with an Improved Matching Modeling Design , 2007, 2007 IEEE International Symposium on Circuits and Systems.
[11] David Blaauw,et al. A Subthreshold Voltage Reference With Scalable Output Voltage for Low-Power IoT Systems , 2017, IEEE Journal of Solid-State Circuits.
[12] David Blaauw,et al. Energy-Autonomous Wireless Communication for Millimeter-Scale Internet-of-Things Sensor Nodes , 2016, IEEE Journal on Selected Areas in Communications.
[13] O. Neyroud,et al. A low-voltage CMOS bandgap reference , 1979, IEEE Journal of Solid-State Circuits.
[14] David Blaauw,et al. A 10 mm3 Inductive Coupling Radio for Syringe-Implantable Smart Sensor Nodes , 2016, IEEE Journal of Solid-State Circuits.
[15] Y. Tsividis. Operation and modeling of the MOS transistor , 1987 .
[16] Carlos Galup-Montoro,et al. CMOS Analog Design Using All-Region MOSFET Modeling: Fundamentals of integrated continuous-time filters , 2010 .
[17] Yintang Yang,et al. A 0.45-V, 14.6-nW CMOS Subthreshold Voltage Reference With No Resistors and No BJTs , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.
[18] Sergio Bampi,et al. Resistorless BJT bias and curvature compensation circuit at 3.4 nW for CMOS bandgap voltage references , 2014 .
[19] Refet Firat Yazicioglu,et al. A 0.6-V, 0.015-mm2, Time-Based ECG Readout for Ambulatory Applications in 40-nm CMOS , 2017, IEEE Journal of Solid-State Circuits.
[20] Anantha Chandrakasan,et al. 23.2 A 1.1nW energy harvesting system with 544pW quiescent power for next-generation implants , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).
[21] David Blaauw,et al. A Modular 1 mm$^{3}$ Die-Stacked Sensing Platform With Low Power I$^{2}$C Inter-Die Communication and Multi-Modal Energy Harvesting , 2013, IEEE Journal of Solid-State Circuits.
[22] Carlos Christoffersen,et al. Nanopower, Sub-1 V, CMOS Voltage References With Digitally-Trimmable Temperature Coefficients , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.
[23] Kofi A. A. Makinwa,et al. Effects of packaging and process spread on a mobility-based frequency reference in 0.16-μm CMOS , 2011, 2011 Proceedings of the ESSCIRC (ESSCIRC).
[24] Giuseppe de Vita,et al. A Sub-1-V, 10 ppm/ $^{\circ}$C, Nanopower Voltage Reference Generator , 2007, IEEE Journal of Solid-State Circuits.
[25] Giuseppe Iannaccone,et al. A 2.6 nW, 0.45 V Temperature-Compensated Subthreshold CMOS Voltage Reference , 2011, IEEE Journal of Solid-State Circuits.
[26] Jin Hu,et al. A 0.45 V, Nano-Watt 0.033% Line Sensitivity MOSFET-Only Sub-Threshold Voltage Reference With no Amplifiers , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.
[27] Anantha P. Chandrakasan,et al. A 1.1 nW Energy-Harvesting System with 544 pW Quiescent Power for Next-Generation Implants , 2014, IEEE Journal of Solid-State Circuits.
[28] Sergio Bampi,et al. 0.3 V supply, 17 ppm/°C 3-transistor picowatt voltage reference , 2016, 2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS).
[29] David Blaauw,et al. A Portable 2-Transistor Picowatt Temperature-Compensated Voltage Reference Operating at 0.5 V , 2012, IEEE Journal of Solid-State Circuits.
[30] Changzhi Li,et al. A 0.7 V Relative Temperature Sensor With a Non-Calibrated $\pm 1~^{\circ}{\rm C}$ 3$\sigma$ Relative Inaccuracy , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.