Generalized Fibonacci Polynomials and Fibonomial Coefficients

The focus of this paper is the study of generalized Fibonacci polynomials and Fibonomial coefficients. The former are polynomials $${\{n\}}$${n}in variables s,t given by $${\{0\} = 0, \{1\} = 1}$${0}=0,{1}=1, and $${\{n \} = s\{n - 1 \} +t\{n - 2 \}}$${n}=s{n-1}+t{n-2} for $${{n \geq 2}}$$n≥2 . The latter are defined by $${\left\{\begin{array}{ll} n\\ k \end{array}\right\} = \{ n \}! / (\{ k \}!\{ n - k \}!)}$$nk={n}!/({k}!{n-k}!) where $${{\{n \}! = \{1 \}\{2 \}\cdots\{n \}}}$${n}!={1}{2}⋯{n}. These quotients are also polynomials in s, t and specializations give the ordinary binomial coefficients, the Fibonomial coefficients, and the q-binomial coefficients. We present some of their fundamental properties, including a more general recursion for $${\{n\}}$${n} , an analogue of the binomial theorem, a new proof of the Euler- Cassini identity in this setting with applications to estimation of tails of series, and valuations when s and t take on integral values. We also study a corresponding analogue of the Catalan numbers. Conjectures and open problems are scattered throughout the paper.

[1]  É. Lucas,et al.  Theorie des Fonctions Numeriques Simplement Periodiques. [Continued] , 1878 .

[2]  Johann Cigler,et al.  q-Fibonacci Polynomials and the Rogers-Ramanujan Identities , 2004 .

[3]  É. Lucas Theorie des Fonctions Numeriques Simplement Periodiques , 1878 .

[4]  Thomas Koshy,et al.  Fibonacci and Lucas Numbers with Applications: Koshy/Fibonacci , 2001 .

[5]  Doron Zeilberger,et al.  Determinants through the Looking Glass , 2001, Adv. Appl. Math..

[6]  Takao Komatsu,et al.  On the Sum of Reciprocal Generalized Fibonacci Numbers , 2011, Integers.

[7]  Bruce E. Sagan,et al.  Set partition statistics and q-Fibonacci numbers , 2007, Eur. J. Comb..

[8]  Adam M. Goyt,et al.  Permutation Statistics and q-Fibonacci Numbers , 2009, Electron. J. Comb..

[9]  Bruce E. Sagan,et al.  Congruences for Catalan and Motzkin numbers and related sequences , 2004 .

[10]  E. Kummer,et al.  Ueber die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen. , 1852 .

[11]  Karl Dilcher,et al.  A Pascal-Type Triangle Characterizing Twin Primes , 2005, Am. Math. Mon..

[12]  Bruce Sagan,et al.  Combinatorial Interpretations of Binomial Coefficient Analogues Related to Lucas Sequences , 2009, Integers.

[13]  C. L. Dodgson,et al.  IV. Condensation of determinants, being a new and brief method for computing their arithmetical values , 1867, Proceedings of the Royal Society of London.

[14]  Wenpeng Zhang,et al.  Several identities involving the Fibonacci polynomials and Lucas polynomials , 2013 .

[15]  Johann Cigler,et al.  A New Class of q-Fibonacci Polynomials , 2003, Electron. J. Comb..

[16]  Kimmo Eriksson,et al.  Lecture Hall Partitions , 1997 .

[17]  Carla D. Savage,et al.  Euler's partition theorem and the combinatorics of l-sequences , 2008, J. Comb. Theory, Ser. A.

[18]  V. Hoggatt,et al.  DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS , 2010 .

[19]  Serge Lang Numbers and Functions , 1986 .

[20]  H. Wilf generatingfunctionology: Third Edition , 1990 .

[21]  Shalosh B. Ekhad The Sagan-Savage Lucas-Catalan Polynomials Have Positive Coefficients , 2011 .

[22]  Arithmetic properties of generalized Fibonacci sequences , 2014, 1407.8086.

[23]  Victor H. Moll,et al.  Numbers and Functions: From a Classical-Experimental Mathematician's Point of View , 2012 .

[24]  Thomas Koshy,et al.  Fibonacci and Lucas Numbers With Applications , 2018 .

[25]  R. Stanley Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .

[26]  Kimmo Eriksson,et al.  Lecture Hall Partitions II , 1997 .

[27]  Johann Cigler,et al.  Some Algebraic Aspects of Morse Code Sequences , 2003, Discret. Math. Theor. Comput. Sci..

[28]  E. Kummer Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen. , 1852 .

[29]  Doron Zeilberger Reverend Charles to the aid of Major Percy and Fields-Medalist Enrico , 1995 .