Information Transduction Capacity of Noisy Biochemical Signaling Networks

Noise limits information transfer through a single signaling pathway in a single cell to just one bit. Molecular noise restricts the ability of an individual cell to resolve input signals of different strengths and gather information about the external environment. Transmitting information through complex signaling networks with redundancies can overcome this limitation. We developed an integrative theoretical and experimental framework, based on the formalism of information theory, to quantitatively predict and measure the amount of information transduced by molecular and cellular networks. Analyzing tumor necrosis factor (TNF) signaling revealed that individual TNF signaling pathways transduce information sufficient for accurate binary decisions, and an upstream bottleneck limits the information gained via multiple integrated pathways. Negative feedback to this bottleneck could both alleviate and enhance its limiting effect, despite decreasing noise. Bottlenecks likewise constrain information attained by networks signaling through multiple genes or cells.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[3]  Shumeet Baluja,et al.  Advances in Neural Information Processing , 1994 .

[4]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[5]  William Bialek,et al.  Entropy and Information in Neural Spike Trains , 1996, cond-mat/9603127.

[6]  B O Palsson,et al.  Effective intercellular communication distances are determined by the relative time constants for cyto/chemokine secretion and diffusion. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[7]  G D Lewen,et al.  Reproducibility and Variability in Neural Spike Trains , 1997, Science.

[8]  L. Serrano,et al.  Engineering stability in gene networks by autoregulation , 2000, Nature.

[9]  A. Ma,et al.  Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. , 2000, Science.

[10]  J. Parkin,et al.  An overview of the immune system , 2001, The Lancet.

[11]  A. Hoffmann,et al.  The I (cid:1) B –NF-(cid:1) B Signaling Module: Temporal Control and Selective Gene Activation , 2022 .

[12]  A. Hoffmann,et al.  The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. , 2002, Science.

[13]  William Bialek,et al.  Occam factors and model-independent Bayesian learning of continuous distributions , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  P. Swain,et al.  Stochastic Gene Expression in a Single Cell , 2002, Science.

[15]  Michael J. Berry,et al.  Synergy, Redundancy, and Independence in Population Codes , 2003, The Journal of Neuroscience.

[16]  Liam Paninski,et al.  Estimation of Entropy and Mutual Information , 2003, Neural Computation.

[17]  P. Scheurich,et al.  Tumor necrosis factor signaling , 2003, Cell Death and Differentiation.

[18]  Mads Kærn,et al.  Noise in eukaryotic gene expression , 2003, Nature.

[19]  J. Paulsson Summing up the noise in gene networks , 2004, Nature.

[20]  D B Kell,et al.  Oscillations in NF-kappaB signaling control the dynamics of gene expression. , 2004, Science.

[21]  A. Kraskov,et al.  Estimating mutual information. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Somasekar Seshagiri,et al.  De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling , 2004, Nature.

[23]  D. Wallach Faculty Opinions recommendation of De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. , 2004 .

[24]  J. Raser,et al.  Control of Stochasticity in Eukaryotic Gene Expression , 2004, Science.

[25]  James R. Johnson,et al.  Oscillations in NF-κB Signaling Control the Dynamics of Gene Expression , 2004, Science.

[26]  J. Folkman,et al.  Maintenance of G1 Checkpoint Controls in Telomerase-Immortalized Endothelial Cells , 2004, Cell cycle.

[27]  W. Bialek,et al.  Information-based clustering. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  P. Swain,et al.  Gene Regulation at the Single-Cell Level , 2005, Science.

[29]  A. Hoffmann,et al.  Transient IKK activity mediates NF-κB temporal dynamics in response to a wide range of TNFα doses , 2005 .

[30]  A. van Oudenaarden,et al.  Noise Propagation in Gene Networks , 2005, Science.

[31]  William Bialek,et al.  Estimating mutual information and multi-information in large networks , 2005, ArXiv.

[32]  K. Sneppen,et al.  Minimal model of spiky oscillations in NF-κB signaling , 2006 .

[33]  Andre Levchenko,et al.  Transient IκB Kinase Activity Mediates Temporal NF-κB Dynamics in Response to a Wide Range of Tumor Necrosis Factor-α Doses* , 2006, Journal of Biological Chemistry.

[34]  Andre Levchenko,et al.  Transient IkappaB kinase activity mediates temporal NF-kappaB dynamics in response to a wide range of tumor necrosis factor-alpha doses. , 2006, The Journal of biological chemistry.

[35]  A. Pouget,et al.  Neural correlations, population coding and computation , 2006, Nature Reviews Neuroscience.

[36]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[37]  Kim Sneppen,et al.  Minimal model of spiky oscillations in NF-kappaB signaling. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[38]  I. Nemenman,et al.  Optimal Signal Processing in Small Stochastic Biochemical Networks , 2006, PloS one.

[39]  Stefano Panzeri,et al.  Correcting for the sampling bias problem in spike train information measures. , 2007, Journal of neurophysiology.

[40]  William Bialek,et al.  Neural Coding of Natural Stimuli: Information at Sub-Millisecond Resolution , 2008, PLoS computational biology.

[41]  W. Bialek,et al.  Information flow and optimization in transcriptional regulation , 2007, Proceedings of the National Academy of Sciences.

[42]  Eero P. Simoncelli,et al.  Spatio-temporal correlations and visual signalling in a complete neuronal population , 2008, Nature.

[43]  A. Hoffmann,et al.  Understanding NF-κB signaling via mathematical modeling , 2008, Molecular systems biology.

[44]  Gasper Tkacik,et al.  Information capacity of genetic regulatory elements. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  R. Milo,et al.  Dynamic Proteomics of Individual Cancer Cells in Response to a Drug , 2008, Science.

[46]  S. Shvartsman,et al.  Nuclear Trapping Shapes the Terminal Gradient in the Drosophila Embryo , 2008, Current Biology.

[47]  R. Yu,et al.  Fus3 generates negative feedback that improves information transmission in yeast pheromone response , 2008, Nature.

[48]  D. Lauffenburger,et al.  Modeling a Snap-Action, Variable-Delay Switch Controlling Extrinsic Cell Death , 2008, PLoS biology.

[49]  David Baltimore,et al.  Encoding NF-kappaB temporal control in response to TNF: distinct roles for the negative regulators IkappaBalpha and A20. , 2008, Genes & development.

[50]  Vahid Shahrezaei,et al.  Analytical distributions for stochastic gene expression , 2008, Proceedings of the National Academy of Sciences.

[51]  P. Swain,et al.  Strategies for cellular decision-making , 2009, Molecular systems biology.

[52]  Andre Levchenko,et al.  High Content Cell Screening in a Microfluidic Device*S , 2009, Molecular & Cellular Proteomics.

[53]  Ned S Wingreen,et al.  Information processing and signal integration in bacterial quorum sensing , 2009, Molecular systems biology.

[54]  Uri Alon,et al.  Dynamics and variability of ERK2 response to EGF in individual living cells. , 2009, Molecular cell.

[55]  D. S. Broomhead,et al.  Pulsatile Stimulation Determines Timing and Specificity of NF-κB-Dependent Transcription , 2009, Science.

[56]  G. Vinnicombe,et al.  Fundamental limits on the suppression of molecular fluctuations , 2010, Nature.

[57]  Adam A. Margolin,et al.  Multivariate dependence and genetic networks inference. , 2010, IET systems biology.

[58]  W. Rappel,et al.  External and internal constraints on eukaryotic chemotaxis , 2010, Proceedings of the National Academy of Sciences.

[59]  S. Quake,et al.  Variability in G-protein-coupled signaling studied with microfluidic devices. , 2010, Biophysical journal.

[60]  Timothy K Lee,et al.  Single-cell NF-κB dynamics reveal digital activation and analogue information processing , 2010, Nature.

[61]  Gerhard Rödel,et al.  Vectors for Glucose-Dependent Protein Expression in Saccharomyces cerevisiae , 2011, Applied biochemistry and biotechnology.