The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium.

[1]  Elena P Ivanova,et al.  Impact of nanoscale roughness of titanium thin film surfaces on bacterial retention. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[2]  R. Lapovok,et al.  Accelerated growth of preosteoblastic cells on ultrafine grained titanium. , 2009, Journal of biomedical materials research. Part A.

[3]  T. Albrektsson,et al.  Effects of titanium surface topography on bone integration: a systematic review. , 2009, Clinical oral implants research.

[4]  Elena P. Ivanova,et al.  Effect of ultrafine-grained titanium surfaces on adhesion of bacteria , 2009, Applied Microbiology and Biotechnology.

[5]  Jan E Ellingsen,et al.  Titanium implant surface modification by cathodic reduction in hydrofluoric acid: surface characterization and in vivo performance. , 2009, Journal of biomedical materials research. Part A.

[6]  S. Okawa,et al.  Chemical mechanical polishing of titanium with colloidal silica containing hydrogen peroxide--mirror polishing and surface properties. , 2009, Dental materials journal.

[7]  Francois Malherbe,et al.  Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus Attachment Patterns on Glass Surfaces with Nanoscale Roughness , 2009, Current Microbiology.

[8]  Jonathan P. Wright,et al.  Staleya guttiformis attachment on poly(tert-butylmethacrylate) polymeric surfaces. , 2008, Micron.

[9]  Lyndon F Cooper,et al.  Advancing dental implant surface technology--from micron- to nanotopography. , 2008, Biomaterials.

[10]  V. V. Latysh,et al.  Nanostructured Titanium for Biomedical Applications , 2008 .

[11]  James Wang,et al.  Impact of nano‐topography on bacterial attachment , 2008, Biotechnology journal.

[12]  B. B. Panigrahi,et al.  In vitro fibroblast response to ultra fine grained titanium produced by a severe plastic deformation process , 2008, Journal of materials science. Materials in medicine.

[13]  Christopher J. Fluke,et al.  Incorporating interactive three-dimensional graphics in astronomy research papers , 2007, 0709.2734.

[14]  G. Voort TITANIUM : SPECIMEN PREPARATION , 2008 .

[15]  K. Smetana,et al.  In vitro biocompatibility of equal channel angular processed (ECAP) titanium , 2007, Biomedical materials.

[16]  R. Valiev,et al.  The Innovation Potential of Bulk Nanostructured Materials , 2007 .

[17]  S. Heo,et al.  Osseointegration of anodized titanium implants under different current voltages: a rabbit study. , 2007, Journal of oral rehabilitation.

[18]  P. Layrolle,et al.  Surface treatments of titanium dental implants for rapid osseointegration. , 2007, Dental materials : official publication of the Academy of Dental Materials.

[19]  K. Whitehead,et al.  The effect of surface properties and application method on the retention of Pseudomonas aeruginosa on uncoated and titanium-coated stainless steel , 2007 .

[20]  Christopher J. Fluke,et al.  An Advanced, Three-Dimensional Plotting Library for Astronomy , 2006, Publications of the Astronomical Society of Australia.

[21]  Maryam Tabrizian,et al.  The significance of crystallographic texture of titanium alloy substrates on pre-osteoblast responses. , 2006, Biomaterials.

[22]  Yuri Estrin,et al.  Producing bulk ultrafine-grained materials by severe plastic deformation , 2006 .

[23]  Carla Renata Arciola,et al.  The significance of infection related to orthopedic devices and issues of antibiotic resistance. , 2006, Biomaterials.

[24]  Michael Müller,et al.  Surface structure and composition of flat titanium thin films as a function of film thickness and evaporation rate , 2005 .

[25]  S. Wuertz,et al.  Compatibility of the green fluorescent protein and a general nucleic acid stain for quantitative description of a Pseudomonas putida biofilm. , 2005, Journal of microbiological methods.

[26]  P. Chu,et al.  Surface modification of titanium, titanium alloys, and related materials for biomedical applications , 2004 .

[27]  H. C. van der Mei,et al.  Atomic force microscopic corroboration of bond aging for adhesion of Streptococcus thermophilus to solid substrata. , 2004, Journal of colloid and interface science.

[28]  T. Matsuda,et al.  Confocal imaging of biofilm formation process using fluoroprobed Escherichia coli and fluoro-stained exopolysaccharide. , 2004, Journal of biomedical materials research. Part A.

[29]  Thomas J Webster,et al.  Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. , 2004, Biomaterials.

[30]  Baikun Li,et al.  Bacterial adhesion to glass and metal-oxide surfaces. , 2004, Colloids and surfaces. B, Biointerfaces.

[31]  T. Webster,et al.  Selective bone cell adhesion on formulations containing carbon nanofibers. , 2003, Biomaterials.

[32]  Thomas J Webster,et al.  Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. , 2002, Tissue engineering.

[33]  Thomas J Webster,et al.  Enhanced functions of osteoblasts on nanometer diameter carbon fibers. , 2002, Biomaterials.

[34]  T. Albrektsson,et al.  Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. , 2002, Biomaterials.

[35]  V. Stolyarov,et al.  Cyclic behavior of ultrafine-grain titanium produced by severe plastic deformation , 2001 .

[36]  J. Feijen,et al.  Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria. , 2001, The Journal of antimicrobial chemotherapy.

[37]  V. Stolyarov,et al.  Influence of ECAP routes on the microstructure and properties of pure Ti , 2001 .

[38]  J. Jacobs,et al.  Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. , 2001, Tissue engineering.

[39]  B. Ersbøll,et al.  Quantification of biofilm structures by the novel computer program COMSTAT. , 2000, Microbiology.

[40]  T. Webster,et al.  Enhanced functions of osteoblasts on nanophase ceramics. , 2000, Biomaterials.

[41]  Didem Öner,et al.  Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability , 2000 .

[42]  T. Webster,et al.  Osteoblast adhesion on nanophase ceramics. , 1999, Biomaterials.

[43]  J. Jansen,et al.  Growth behavior of fibroblasts on microgrooved polystyrene. , 1998, Biomaterials.

[44]  J. Christopher Grimaldi,et al.  Introduction to Cell and Tissue Culture: Theory And Technique , 1998 .

[45]  J. Sullivan,et al.  Surface characterisation of plasma-nitrided titanium: an XPS study , 1995 .

[46]  W. Evans,et al.  Titanium Alloys for Biomedical Applications , 1989 .

[47]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.