Simulation of an anion in water: effect of ion polarizability

Abstract A polarizable-polar water model is used to study the structure of wate near a chloride ion. A semi-classical description of ion polarizability is included. Significant changes in the solute-solvent distribution functions are observed. When compared with a simulation without ion polarizability, it is found that the hydration number is further decreased when ion polarizability is present.

[1]  William L. Jorgensen,et al.  Energy component analysis for dilute aqueous solutions of lithium(1+), sodium(1+), fluoride(1-), and chloride(1-) ions , 1984 .

[2]  Charles L. Brooks,et al.  An abinitio study of hydrated chloride ion complexes: Evidence of polarization effects and nonadditivity , 1987 .

[3]  Terry P. Lybrand,et al.  A new water potential including polarization: Application to gas‐phase, liquid, and crystal properties of water , 1990 .

[4]  D. Lévesque,et al.  Electrical properties of polarizable ionic solutions. II. Computer simulation results , 1989 .

[5]  Alan K. Soper,et al.  A new determination of the structure of water at 25°C , 1986 .

[6]  J. E. Quinn,et al.  Cooperative effects in simulated water , 1979, Nature.

[7]  P. Kollman,et al.  Water–water and water–ion potential functions including terms for many body effects , 1985 .

[8]  Terry P. Lybrand,et al.  Calculation of free energy changes in ion–water clusters using nonadditive potentials and the Monte Carlo method , 1987 .

[9]  Michiel Sprik,et al.  COMPUTER-SIMULATION OF THE DYNAMICS OF INDUCED POLARIZATION FLUCTUATIONS IN WATER , 1991 .

[10]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[11]  D. Lévesque,et al.  Electrical properties of polarizable ionic solutions. I. Theoretical aspects , 1989 .

[12]  B. Montgomery Pettitt,et al.  Alkali halides in water: Ion–solvent correlations and ion–ion potentials of mean force at infinite dilution , 1986 .

[13]  Michiel Sprik,et al.  A polarizable model for water using distributed charge sites , 1988 .

[14]  M. Karplus,et al.  Perturbation theory and ionic models for alkali halide systems. I Diatomics , 1973 .

[15]  Charles L. Brooks,et al.  The influence of long-range force truncation on the thermodynamics of aqueous ionic solutions , 1987 .

[16]  Roger Impey,et al.  Hydration and mobility of ions in solution , 1983 .

[17]  P. Wolynes Dynamics of Electrolyte Solutions , 1980 .

[18]  P. Kollman,et al.  Monte Carlo simulation of aqueous solutions of Li+ and Na+ using many‐body potentials. Coordination numbers, ion solvation enthalpies, and the relative free energy of solvation , 1990 .

[19]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[20]  D. J. Adams,et al.  Taming the Edwald sum in the computer simulation of charged systems , 1987 .

[21]  Chung F. Wong,et al.  Ionic Association in Water: From Atoms to Enzymes a , 1986, Annals of the New York Academy of Sciences.

[22]  Michiel Sprik,et al.  Solvent polarization and hydration of the chlorine anion , 1990 .

[23]  Giorgina Corongiu,et al.  Molecular dynamics simulations of liquid water using the NCC ab initio potential , 1990 .

[24]  Michael L. Klein,et al.  Effective pair potentials and the properties of water , 1989 .

[25]  T. P. Straatsma,et al.  Free energy evaluation from molecular dynamics simulations using force fields including electronics polarization , 1991 .

[26]  Peter A. Kollman,et al.  Ion solvation in polarizable water: molecular dynamics simulations , 1991 .

[27]  James Andrew McCammon,et al.  Molecular Dynamics Simulations with Interaction Potentials Including Polarization Development of a Noniterative Method and Application to Water , 1990 .