Fast L1-NMF for Multiple Parametric Model Estimation

In this work we introduce a comprehensive algorithmic pipeline for multiple parametric model estimation. The proposed approach analyzes the information produced by a random sampling algorithm (e.g., RANSAC) from a machine learning/optimization perspective, using a \textit{parameterless} biclustering algorithm based on L1 nonnegative matrix factorization (L1-NMF). The proposed framework exploits consistent patterns that naturally arise during the RANSAC execution, while explicitly avoiding spurious inconsistencies. Contrarily to the main trends in the literature, the proposed technique does not impose non-intersecting parametric models. A new accelerated algorithm to compute L1-NMFs allows to handle medium-sized problems faster while also extending the usability of the algorithm to much larger datasets. This accelerated algorithm has applications in any other context where an L1-NMF is needed, beyond the biclustering approach to parameter estimation here addressed. We accompany the algorithmic presentation with theoretical foundations and numerous and diverse examples.

[1]  Michael Werman,et al.  Two Points Fundamental Matrix , 2016, ArXiv.

[2]  Agnès Desolneux,et al.  Vanishing Point Detection without Any A Priori Information , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Thomas M. Cover,et al.  Enumerative source encoding , 1973, IEEE Trans. Inf. Theory.

[4]  Gabriel Taubin,et al.  Vanishing Point Detection by Segment Clustering on the Projective Space , 2010, ECCV Workshops.

[5]  Tat-Jun Chin,et al.  Dynamic and hierarchical multi-structure geometric model fitting , 2011, 2011 International Conference on Computer Vision.

[6]  Tat-Jun Chin,et al.  The Random Cluster Model for robust geometric fitting , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[8]  B. S. Manjunath,et al.  The multiRANSAC algorithm and its application to detect planar homographies , 2005, IEEE International Conference on Image Processing 2005.

[9]  Andrea Lancichinetti,et al.  Detecting the overlapping and hierarchical community structure in complex networks , 2008, 0802.1218.

[10]  Chris H. Q. Ding,et al.  Solving Consensus and Semi-supervised Clustering Problems Using Nonnegative Matrix Factorization , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[11]  Xi Wang,et al.  High-Resolution Stereo Datasets with Subpixel-Accurate Ground Truth , 2014, GCPR.

[12]  David P. Woodruff,et al.  The Fast Cauchy Transform and Faster Robust Linear Regression , 2012, SIAM journal on computing (Print).

[13]  Andrea Fusiello,et al.  T-Linkage: A Continuous Relaxation of J-Linkage for Multi-model Fitting , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Jean-Michel Jolion,et al.  Image segmentation by a contrario simulation , 2009, Pattern Recognit..

[15]  Bernard Chazelle,et al.  The Fast Johnson--Lindenstrauss Transform and Approximate Nearest Neighbors , 2009, SIAM J. Comput..

[16]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[17]  Rafael Grompone von Gioi,et al.  Finding Vanishing Points via Point Alignments in Image Primal and Dual Domains , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Jean-Michel Morel,et al.  From Gestalt Theory to Image Analysis , 2008 .

[19]  Chris H. Q. Ding,et al.  Robust nonnegative matrix factorization using L21-norm , 2011, CIKM '11.

[20]  Rafael Grompone von Gioi,et al.  LSD: A Fast Line Segment Detector with a False Detection Control , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Nikos D. Sidiropoulos,et al.  From K-Means to Higher-Way Co-Clustering: Multilinear Decomposition With Sparse Latent Factors , 2013, IEEE Transactions on Signal Processing.

[22]  Guillermo Sapiro,et al.  Multi-temporal foreground detection in videos , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[23]  Jean-Philippe Tardif,et al.  Non-iterative approach for fast and accurate vanishing point detection , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[24]  Vincent Y. F. Tan,et al.  Online Nonnegative Matrix Factorization With Outliers , 2016, IEEE Transactions on Signal Processing.

[25]  James H. Elder,et al.  Efficient Edge-Based Methods for Estimating Manhattan Frames in Urban Imagery , 2008, ECCV.

[26]  Bernard Chazelle,et al.  Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform , 2006, STOC '06.

[27]  Erkki Oja,et al.  A new curve detection method: Randomized Hough transform (RHT) , 1990, Pattern Recognit. Lett..

[28]  David P. Woodruff,et al.  Subspace embeddings for the L1-norm with applications , 2011, STOC '11.

[29]  Guillermo Sapiro,et al.  A Biclustering Framework for Consensus Problems , 2014, SIAM J. Imaging Sci..

[30]  Andrea Fusiello,et al.  Robust Multiple Structures Estimation with J-Linkage , 2008, ECCV.

[31]  Tat-Jun Chin,et al.  Accelerated Hypothesis Generation for Multistructure Data via Preference Analysis , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  R. Tibshirani,et al.  A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. , 2009, Biostatistics.

[33]  Sunglok Choi,et al.  Performance Evaluation of RANSAC Family , 2009, BMVC.

[34]  Peter Meer,et al.  Nonlinear Mean Shift for Clustering over Analytic Manifolds , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[35]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.

[36]  Andrea Fusiello,et al.  Robust Multiple Model Fitting with Preference Analysis and Low-rank Approximation , 2015, BMVC.

[37]  Julien Rabin,et al.  MAC-RANSAC: a robust algorithm for the recognition of multiple objects , 2010 .