A posteriori error analysis of the heterogeneous multiscale method for homogenization problems

In this Note we derive a posteriori error estimates for a multiscale method, the so-called heterogeneous multiscale method, applied to elliptic homogenization problems. The multiscale method is based on a macro-to-micro formulation. The macroscopic method discretizes the physical problem in a macroscopic finite element space, while the microscopic method recovers the unknown macroscopic data on the fly during the macroscopic stiffness matrix assembly process. We propose a framework for the analysis allowing to take advantage of standard techniques for a posteriori error estimates at the macroscopic level and to derive residual-based indicators in the macroscopic domain for adaptive mesh refinement. To cite this article: A. Abdulle, A. Nonnenmacher, C. R. Acad. Sci Paris, Ser. 1347 (2009). (C) 2009 Published by Elsevier Masson SAS on behalf of Academie des sciences.

[1]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[2]  Mario Ohlberger,et al.  A Posteriori Error Estimates for the Heterogeneous Multiscale Finite Element Method for Elliptic Homogenization Problems , 2005, Multiscale Model. Simul..

[3]  Assyr Abdulle,et al.  Multiscale method based on discontinuous Galerkin methods for homogenization problems , 2008 .

[4]  E. Weinan,et al.  Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .

[5]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[6]  Assyr Abdulle,et al.  Finite Element Heterogeneous Multiscale Methods with Near Optimal Computational Complexity , 2008, Multiscale Model. Simul..

[7]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[8]  E Weinan,et al.  The local microscale problem in the multiscale modeling of strongly heterogeneous media: Effects of boundary conditions and cell size , 2007, J. Comput. Phys..

[9]  George Papanicolaou,et al.  A Framework for Adaptive Multiscale Methods for Elliptic Problems , 2008, Multiscale Model. Simul..

[10]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[11]  Assyr Abdulle,et al.  On A Priori Error Analysis of Fully Discrete Heterogeneous Multiscale FEM , 2005, Multiscale Model. Simul..

[12]  Assyr Abdulle,et al.  Heterogeneous Multiscale FEM for Diffusion Problems on Rough Surfaces , 2005, Multiscale Model. Simul..

[13]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[14]  Assyr Abdulle,et al.  A short and versatile finite element multiscale code for homogenization problems , 2009 .

[15]  Assyr Abdulle,et al.  The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs , 2009 .

[16]  J. Banavar,et al.  The Heterogeneous Multi-Scale Method , 1992 .

[17]  A. Abdulle ANALYSIS OF A HETEROGENEOUS MULTISCALE FEM FOR PROBLEMS IN ELASTICITY , 2006 .