High-Dimensional Quantum Communication Complexity beyond Strategies Based on Bell's Theorem.

Quantum resources can improve communication complexity problems (CCPs) beyond their classical constraints. One quantum approach is to share entanglement and create correlations violating a Bell inequality, which can then assist classical communication. A second approach is to resort solely to the preparation, transmission, and measurement of a single quantum system, in other words, quantum communication. Here, we show the advantages of the latter over the former in high-dimensional Hilbert space. We focus on a family of CCPs, based on facet Bell inequalities, study the advantage of high-dimensional quantum communication, and realize such quantum communication strategies using up to ten-dimensional systems. The experiment demonstrates, for growing dimension, an increasing advantage over quantum strategies based on Bell inequality violation. For sufficiently high dimensions, quantum communication also surpasses the limitations of the postquantum Bell correlations obeying only locality in the macroscopic limit. We find that the advantages are tied to the use of measurements that are not rank-one projective, and provide an experimental semi-device-independent falsification of such measurements in Hilbert space dimension six.

[1]  Marek Zukowski,et al.  Quantum communication complexity protocol with two entangled qutrits. , 2002, Physical review letters.

[2]  Marek Żukowski,et al.  Quest for Ghz States , 1998 .

[3]  Christian Kurtsiefer,et al.  Experimental single qubit quantum secret sharing. , 2005, Physical review letters.

[4]  Adetunmise C. Dada,et al.  Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities , 2011, 1104.5087.

[5]  A. Winter,et al.  Hyperbits: the information quasiparticles , 2011, 1106.2409.

[6]  Michael M. Wolf,et al.  Bell inequalities and entanglement , 2001, Quantum Inf. Comput..

[7]  Armin Tavakoli,et al.  Higher dimensional communication complexity problems: classical protocols vs quantum ones based on Bell's Theorem or prepare-transmit-measure schemes , 2016, 1611.00977.

[8]  Quantum communication using a nonlocal Zeno effect , 1999 .

[9]  Nicolas Brunner,et al.  Semi-device-independent security of one-way quantum key distribution , 2011, 1103.4105.

[10]  Mohamed Bourennane,et al.  Complementarity between entanglement-assisted and quantum distributed random access code , 2017, 1701.08713.

[11]  M. Navascués,et al.  A glance beyond the quantum model , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  M. Żukowski,et al.  Bell's inequalities and quantum communication complexity. , 2004, Physical review letters.

[13]  H. Buhrman,et al.  Limit on nonlocality in any world in which communication complexity is not trivial. , 2005, Physical review letters.

[14]  S. Massar,et al.  Bell inequalities for arbitrarily high-dimensional systems. , 2001, Physical review letters.

[15]  Armin Tavakoli,et al.  Spatial versus sequential correlations for random access coding , 2015, 1510.06277.

[16]  Mateus Araújo,et al.  Exponential Communication Complexity Advantage from Quantum Superposition of the Direction of Communication. , 2016, Physical review letters.

[17]  Gustavo Lima,et al.  Device-independent certification of high-dimensional quantum systems. , 2014, Physical review letters.

[18]  M. Pawłowski,et al.  Entanglement-assisted random access codes , 2009, 0906.0524.

[19]  Stefan Zohren,et al.  Maximal violation of the Collins-Gisin-Linden-Massar-Popescu inequality for infinite dimensional states. , 2006, Physical review letters.

[20]  E. S. Gómez,et al.  Experimental quantum tomography of photonic qudits via mutually unbiased basis. , 2010, Optics express.

[21]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[22]  Ll Masanes Tight Bell inequality for d-outcome measurements correlations , 2003, Quantum Inf. Comput..

[23]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[24]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[25]  Nicolas Gisin,et al.  Bell-Type Test of Energy-Time Entangled Qutrits , 2004 .

[26]  G. Vallone,et al.  High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers , 2016, 1610.01682.

[27]  M. Bourennane,et al.  Quantum Bidding in Bridge , 2014, 1403.4280.

[28]  Ignacio Moreno,et al.  Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display , 2003 .

[29]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .

[30]  Takayoshi Kobayashi,et al.  Experimental violation of Bell inequalities for multi-dimensional systems , 2015, Scientific Reports.

[31]  G. Lima,et al.  Manipulating spatial qudit states with programmable optical devices. , 2009, Optics express.

[32]  Simone Severini,et al.  Extrema of discrete Wigner functions and applications , 2008, 0805.3466.

[33]  T. V'ertesi,et al.  Quantum bounds on Bell inequalities , 2008, 0810.1615.

[34]  M Fitzi,et al.  Quantum solution to the Byzantine agreement problem. , 2001, Physical review letters.

[36]  R. Landauer The physical nature of information , 1996 .

[37]  Andris Ambainis,et al.  Dense quantum coding and a lower bound for 1-way quantum automata , 1998, STOC '99.

[38]  Miguel Navascués,et al.  Bounding the Set of Finite Dimensional Quantum Correlations. , 2014, Physical review letters.

[39]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[40]  Marek Żukowski,et al.  QUANTUM COMMUNICATION COMPLEXITY PROTOCOLS BASED ON HIGHER-DIMENSIONAL ENTANGLED SYSTEMS , 2003 .

[41]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[42]  D. Gauthier,et al.  High-dimensional quantum cryptography with twisted light , 2014, 1402.7113.

[43]  M A Solís-Prosser,et al.  Experimental Minimum-Error Quantum-State Discrimination in High Dimensions. , 2017, Physical review letters.

[44]  Five Measurement Bases Determine Pure Quantum States on Any Dimension. , 2014, Physical review letters.

[45]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[46]  Marek Zukowski,et al.  Experimental quantum communication complexity , 2005, quant-ph/0502066.

[47]  G. Cañas,et al.  Experimental implementation of an eight-dimensional Kochen-Specker set and observation of its connection with the Greenberger-Horne-Zeilinger theorem , 2013, 1308.6336.

[48]  R. Cleve,et al.  SUBSTITUTING QUANTUM ENTANGLEMENT FOR COMMUNICATION , 1997, quant-ph/9704026.

[49]  Michael Epping,et al.  Bound entanglement helps to reduce communication complexity , 2012, 1209.2962.

[50]  E. Kushilevitz,et al.  Communication Complexity: Basics , 1996 .

[51]  S. Luo Quantum discord for two-qubit systems , 2008 .

[52]  Armin Tavakoli,et al.  Communication Games Reveal Preparation Contextuality. , 2017, Physical review letters.

[53]  A. Winter,et al.  Information causality as a physical principle , 2009, Nature.

[54]  Armin Tavakoli,et al.  Experimental quantum multiparty communication protocols , 2016, npj Quantum Information.

[55]  Tamás Vértesi,et al.  Maximal violation of a bipartite three-setting, two-outcome Bell inequality using infinite-dimensional quantum systems , 2010 .

[56]  Gustavo Lima,et al.  Certifying an Irreducible 1024-Dimensional Photonic State Using Refined Dimension Witnesses. , 2017, Physical review letters.

[57]  Armin Tavakoli,et al.  Quantum Random Access Codes Using Single d-Level Systems. , 2015, Physical review letters.

[58]  S. Pádua,et al.  Experimental simulation of decoherence in photonics qudits , 2015, Scientific Reports.

[59]  S. Goyal,et al.  Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases , 2013, 1402.5810.

[60]  R. Cleve,et al.  Nonlocality and communication complexity , 2009, 0907.3584.

[61]  H. Buhrman,et al.  Quantum communication complexity advantage implies violation of a Bell inequality , 2015, Proceedings of the National Academy of Sciences.

[62]  Armin Tavakoli,et al.  Quantum Clock Synchronization with a Single Qudit , 2015, Scientific Reports.

[63]  Peter Hoyer,et al.  Multiparty quantum communication complexity. , 1997 .

[64]  Determination of any pure spatial qudits from a minimum number of measurements by phase-stepping interferometry , 2017, 1707.03306.