Investigating the candidacy of a lipoteichoic acid-based glycoconjugate as a vaccine to combat Clostridium difficile infection

[1]  M. Oberli,et al.  Glycan arrays containing synthetic Clostridium difficile lipoteichoic acid oligomers as tools toward a carbohydrate vaccine. , 2013, Chemical communications.

[2]  M. Oberli,et al.  Immunological evaluation of a synthetic Clostridium difficile oligosaccharide conjugate vaccine candidate and identification of a minimal epitope. , 2013, Journal of the American Chemical Society.

[3]  M. Sagermann,et al.  Carbohydrate-based Clostridium difficile vaccines , 2013, Expert review of vaccines.

[4]  A. Cripps,et al.  Vaccination for the control of childhood bacterial pneumonia — Haemophilus influenzae type b and pneumococcal vaccines , 2013, Pneumonia.

[5]  D. Gerding,et al.  Evaluation of an Oral Suspension of VP20621, Spores of Nontoxigenic Clostridium difficile Strain M3, in Healthy Subjects , 2012, Antimicrobial Agents and Chemotherapy.

[6]  L. Mortin,et al.  In Vitro and In Vivo Characterization of CB-183,315, a Novel Lipopeptide Antibiotic for Treatment of Clostridium difficile , 2012, Antimicrobial Agents and Chemotherapy.

[7]  R. Carman,et al.  A novel fusion protein containing the receptor binding domains of C. difficile toxin A and toxin B elicits protective immunity against lethal toxin and spore challenge in preclinical efficacy models. , 2012, Vaccine.

[8]  L. Lay,et al.  Phosphorylation of the synthetic hexasaccharide repeating unit is essential for the induction of antibodies to Clostridium difficile PSII cell wall polysaccharide. , 2012, ACS chemical biology.

[9]  J. Brisson,et al.  Structural characterization of surface glycans from Clostridium difficile. , 2012, Carbohydrate research.

[10]  A. Zinsmeister,et al.  The Epidemiology of Community-Acquired Clostridium difficile Infection: A Population-Based Study , 2012, The American Journal of Gastroenterology.

[11]  J. Bakken,et al.  Treating Clostridium difficile infection with fecal microbiota transplantation. , 2011, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[12]  L. Brandt,et al.  Fecal microbiota transplantation for recurrent Clostridium difficile infection , 2018, Canadian Medical Association Journal.

[13]  C. Kelly,et al.  The host immune response to Clostridium difficile. , 2011, Journal of medical microbiology.

[14]  A. Cox,et al.  Investigating the candidacy of lipopolysaccharide-based glycoconjugates as vaccines to combat Mannheimia haemolytica , 2011, Glycoconjugate Journal.

[15]  M. Oberli,et al.  A possible oligosaccharide-conjugate vaccine candidate for Clostridium difficile is antigenic and immunogenic. , 2011, Chemistry & biology.

[16]  A. Cox,et al.  Investigating the potential of conserved inner core oligosaccharide regions of Moraxella catarrhalis lipopolysaccharide as vaccine antigens: accessibility and functional activity of monoclonal antibodies and glycoconjugate derived sera , 2011, Glycoconjugate Journal.

[17]  L. Lay,et al.  First synthesis of C. difficile PS-II cell wall polysaccharide repeating unit. , 2011, Organic letters.

[18]  R. Gasparini,et al.  Meningococcal glycoconjugate vaccines , 2011, Human vaccines.

[19]  J. Tanha,et al.  Neutralization of Clostridium difficile Toxin A with Single-domain Antibodies Targeting the Cell Receptor Binding Domain* , 2011, The Journal of Biological Chemistry.

[20]  E. Moxon,et al.  Investigating the candidacy of LPS-based glycoconjugates to prevent invasive meningococcal disease: immunology of glycoconjugates with high carbohydrate loading , 2010, Glycoconjugate Journal.

[21]  Dhara Shah,et al.  Clostridium difficile infection: update on emerging antibiotic treatment options and antibiotic resistance , 2010, Expert review of anti-infective therapy.

[22]  Roger Baxter,et al.  Treatment with monoclonal antibodies against Clostridium difficile toxins. , 2010, The New England journal of medicine.

[23]  J. Weese,et al.  Clostridium difficile cell-surface polysaccharides composed of pentaglycosyl and hexaglycosyl phosphate repeating units. , 2008, Carbohydrate research.

[24]  Carlene A. Muto,et al.  Measures to control and prevent Clostridium difficile infection. , 2008, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[25]  J. Brisson,et al.  Structural analysis of the lipopolysaccharide from Neisseria meningitidis strain BZ157 galE: localisation of two phosphoethanolamine residues in the inner core oligosaccharide. , 2002, Carbohydrate research.

[26]  I. Poxton,et al.  Immunochemistry of the cell-surface carbohydrate antigens of Clostridium difficile. , 1982, Journal of general microbiology.

[27]  A. Jeanes,et al.  Quantitative Determination of Monosaccharides as Their Alditol Acetates by Gas Liquid Chromatography. , 1965 .

[28]  Anne Elixhauser,et al.  Clostridium Difficile Infections (CDI) in Hospital Stays, 2009 , 2012 .

[29]  I. Pastan,et al.  Pseudomonas exotoxin contains a specific sequence at the carboxyl terminus that is required for cytotoxicity. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[30]  I. Poxton,et al.  Immunological analysis of the EDTA-soluble antigens of Clostridium difficile and related species. , 1981, Journal of general microbiology.