Shift-Based Density Estimation for Pareto-Based Algorithms in Many-Objective Optimization

It is commonly accepted that Pareto-based evolutionary multiobjective optimization (EMO) algorithms encounter difficulties in dealing with many-objective problems. In these algorithms, the ineffectiveness of the Pareto dominance relation for a high-dimensional space leads diversity maintenance mechanisms to play the leading role during the evolutionary process, while the preference of diversity maintenance mechanisms for individuals in sparse regions results in the final solutions distributed widely over the objective space but distant from the desired Pareto front. Intuitively, there are two ways to address this problem: 1) modifying the Pareto dominance relation and 2) modifying the diversity maintenance mechanism in the algorithm. In this paper, we focus on the latter and propose a shift-based density estimation (SDE) strategy. The aim of our study is to develop a general modification of density estimation in order to make Pareto-based algorithms suitable for many-objective optimization. In contrast to traditional density estimation that only involves the distribution of individuals in the population, SDE covers both the distribution and convergence information of individuals. The application of SDE in three popular Pareto-based algorithms demonstrates its usefulness in handling many-objective problems. Moreover, an extensive comparison with five state-of-the-art EMO algorithms reveals its competitiveness in balancing convergence and diversity of solutions. These findings not only show that SDE is a good alternative to tackle many-objective problems, but also present a general extension of Pareto-based algorithms in many-objective optimization.

[1]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[2]  Frank Neumann,et al.  On the Effects of Adding Objectives to Plateau Functions , 2009, IEEE Transactions on Evolutionary Computation.

[3]  Soon-Thiam Khu,et al.  An Investigation on Preference Order Ranking Scheme for Multiobjective Evolutionary Optimization , 2007, IEEE Transactions on Evolutionary Computation.

[4]  Peter J. Fleming,et al.  An Adaptive Divide-and-ConquerMethodology forEvolutionary Multi-criterion Optimisation , 2003, EMO.

[5]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[6]  Carlos A. Coello Coello,et al.  On the Influence of the Number of Objectives on the Hardness of a Multiobjective Optimization Problem , 2011, IEEE Transactions on Evolutionary Computation.

[7]  Frank Neumann,et al.  Approximating Pareto-Optimal Sets Using Diversity Strategies in Evolutionary Multi-Objective Optimization , 2010, Advances in Multi-Objective Nature Inspired Computing.

[8]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[9]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[10]  Hisao Ishibuchi,et al.  A Study on the Specification of a Scalarizing Function in MOEA/D for Many-Objective Knapsack Problems , 2013, LION.

[11]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[12]  Kiyoshi Tanaka,et al.  Space partitioning with adaptive ε-ranking and substitute distance assignments: a comparative study on many-objective mnk-landscapes , 2009, GECCO '09.

[13]  Carlos A. Coello Coello,et al.  Evolutionary multiobjective optimization , 2011, WIREs Data Mining Knowl. Discov..

[14]  Mario Köppen,et al.  Substitute Distance Assignments in NSGA-II for Handling Many-objective Optimization Problems , 2007, EMO.

[15]  Eckart Zitzler,et al.  Evolutionary multi-objective optimization , 2007, Eur. J. Oper. Res..

[16]  Ole J Mengshoel,et al.  The Crowding Approach to Niching in Genetic Algorithms , 2008, Evolutionary Computation.

[17]  Kalyanmoy Deb,et al.  Improved Pruning of Non-Dominated Solutions Based on Crowding Distance for Bi-Objective Optimization Problems , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[18]  Kiyoshi Tanaka,et al.  Adaptive Objective Space Partitioning Using Conflict Information for Many-Objective Optimization , 2011, EMO.

[19]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[20]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[21]  Mario Köppen,et al.  Fuzzy-Pareto-Dominance and its Application in Evolutionary Multi-objective Optimization , 2005, EMO.

[22]  Graham Kendall,et al.  Handling diversity in evolutionary multiobjective optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[23]  Xin Yao,et al.  Multi-Objective Approaches to Optimal Testing Resource Allocation in Modular Software Systems , 2010, IEEE Transactions on Reliability.

[24]  E. Hughes Multiple single objective Pareto sampling , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[25]  Hisao Ishibuchi,et al.  Behavior of EMO algorithms on many-objective optimization problems with correlated objectives , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[26]  Carlos A. Coello Coello,et al.  Study of preference relations in many-objective optimization , 2009, GECCO.

[27]  Hisao Ishibuchi,et al.  Effectiveness of scalability improvement attempts on the performance of NSGA-II for many-objective problems , 2008, GECCO '08.

[28]  Kiyoshi Tanaka,et al.  Improved S-CDAs using crossover controlling the number of crossed genes for many-objective optimization , 2011, GECCO '11.

[29]  Nicola Beume,et al.  Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization , 2007, EMO.

[30]  David W. Corne,et al.  Quantifying the Effects of Objective Space Dimension in Evolutionary Multiobjective Optimization , 2007, EMO.

[31]  Marco Farina,et al.  A fuzzy definition of "optimality" for many-criteria optimization problems , 2004, IEEE Trans. Syst. Man Cybern. Part A.

[32]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[33]  Tong Heng Lee,et al.  Multiobjective Evolutionary Algorithms and Applications , 2005, Advanced Information and Knowledge Processing.

[34]  Hisao Ishibuchi,et al.  Many-Objective Test Problems to Visually Examine the Behavior of Multiobjective Evolution in a Decision Space , 2010, PPSN.

[35]  Harold W. Kuhn,et al.  Nonlinear programming: a historical view , 1982, SMAP.

[36]  Eckart Zitzler,et al.  Objective Reduction in Evolutionary Multiobjective Optimization: Theory and Applications , 2009, Evolutionary Computation.

[37]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization by NSGA-II and MOEA/D with large populations , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[38]  O. Teytaud How entropy-theorems can show that approximating high-dim Pareto-fronts is too hard , 2006 .

[39]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[40]  Dirk Thierens,et al.  The balance between proximity and diversity in multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[41]  Kalyanmoy Deb,et al.  Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions , 2005, Evolutionary Computation.

[42]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[43]  A. Farhang-Mehr,et al.  Entropy-based multi-objective genetic algorithm for design optimization , 2002 .

[44]  Patrick M. Reed,et al.  Diagnostic Assessment of Search Controls and Failure Modes in Many-Objective Evolutionary Optimization , 2012, Evolutionary Computation.

[45]  Peter J. Fleming,et al.  Diversity Management in Evolutionary Many-Objective Optimization , 2011, IEEE Transactions on Evolutionary Computation.

[46]  Carlos A. Coello Coello,et al.  Effective ranking + speciation = Many-objective optimization , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[47]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[48]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[49]  Tobias Friedrich,et al.  An Efficient Algorithm for Computing Hypervolume Contributions , 2010, Evolutionary Computation.

[50]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[51]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[52]  Marco Laumanns,et al.  On the Effects of Archiving, Elitism, and Density Based Selection in Evolutionary Multi-objective Optimization , 2001, EMO.

[53]  Xin Yao,et al.  Performance Scaling of Multi-objective Evolutionary Algorithms , 2003, EMO.

[54]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[55]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[56]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[57]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[58]  Lucas Bradstreet,et al.  A Fast Way of Calculating Exact Hypervolumes , 2012, IEEE Transactions on Evolutionary Computation.

[59]  Tong Heng Lee,et al.  A Study on Distribution Preservation Mechanism in Evolutionary Multi-Objective Optimization , 2005, Artificial Intelligence Review.

[60]  Kittipong Boonlong,et al.  Multi-objective Optimisation by Co-operative Co-evolution , 2004, PPSN.

[61]  David W. Corne,et al.  Techniques for highly multiobjective optimisation: some nondominated points are better than others , 2007, GECCO '07.

[62]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[63]  Jinhua Zheng,et al.  Enhancing Diversity for Average Ranking Method in Evolutionary Many-Objective Optimization , 2010, PPSN.

[64]  Lothar Thiele,et al.  Quality Assessment of Pareto Set Approximations , 2008, Multiobjective Optimization.

[65]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[66]  Shengxiang Yang,et al.  A Comparative Study on Evolutionary Algorithms for Many-Objective Optimization , 2013, EMO.

[67]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[68]  Hisao Ishibuchi,et al.  Effects of the Existence of Highly Correlated Objectives on the Behavior of MOEA/D , 2011, EMO.

[69]  Anne Auger,et al.  Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point , 2009, FOGA '09.

[70]  Jinhua Zheng,et al.  A grid-based fitness strategy for evolutionary many-objective optimization , 2010, GECCO '10.

[71]  Evan J. Hughes,et al.  Evolutionary many-objective optimisation: many once or one many? , 2005, 2005 IEEE Congress on Evolutionary Computation.

[72]  Mitsuo Gen,et al.  Specification of Genetic Search Directions in Cellular Multi-objective Genetic Algorithms , 2001, EMO.

[73]  Shengxiang Yang,et al.  ETEA: A Euclidean Minimum Spanning Tree-Based Evolutionary Algorithm for Multi-Objective Optimization , 2014, Evolutionary Computation.

[74]  Peter J. Fleming,et al.  Preference-Inspired Coevolutionary Algorithms for Many-Objective Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[75]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[76]  Gary G. Yen,et al.  Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and density estimation , 2003, IEEE Trans. Evol. Comput..

[77]  Peter J. Fleming,et al.  On the Evolutionary Optimization of Many Conflicting Objectives , 2007, IEEE Transactions on Evolutionary Computation.

[78]  H. Kita,et al.  Failure of Pareto-based MOEAs: does non-dominated really mean near to optimal? , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[79]  Marc P. Armstrong,et al.  A Specialized Island Model and Its Application in Multiobjective Optimization , 2003, GECCO.

[80]  Shengxiang Yang,et al.  IPESA-II: Improved Pareto Envelope-Based Selection Algorithm II , 2013, EMO.

[81]  Peter J. Fleming,et al.  Many-Objective Optimization: An Engineering Design Perspective , 2005, EMO.

[82]  Kalyanmoy Deb,et al.  Running performance metrics for evolutionary multi-objective optimizations , 2002 .

[83]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[84]  Shengxiang Yang,et al.  A Grid-Based Evolutionary Algorithm for Many-Objective Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[85]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[86]  Changhe Li,et al.  A Clustering Particle Swarm Optimizer for Locating and Tracking Multiple Optima in Dynamic Environments , 2010, IEEE Transactions on Evolutionary Computation.