P13, the EMBL macromolecular crystallography beamline at the low-emittance PETRA III ring for high- and low-energy phasing with variable beam focusing

The P13 macromolecular crystallography beamline, based on the low-emittance source PETRA III, enables X-ray diffraction experiments on macromolecular crystals over a wide wavelength range (0.7–3.1 Å). The beam has a variable focus size and a small divergence enabling data collection on micrometre-sized crystals.

[1]  W. R. Wikoff,et al.  Increased resolution data from a large unit cell crystal collected at a third-generation synchrotron X-ray source. , 2000, Acta crystallographica. Section D, Biological crystallography.

[2]  O. Hignette,et al.  Multi-segmented piezoelectric mirrors as active/adaptive optics components. , 1998, Journal of synchrotron radiation.

[3]  Didier Nurizzo,et al.  MxCuBE: a synchrotron beamline control environment customized for macromolecular crystallography experiments , 2010, Journal of synchrotron radiation.

[4]  Shenglan Xu,et al.  Mini-beam collimator enables microcrystallography experiments on standard beamlines. , 2009, Journal of synchrotron radiation.

[5]  Florent Cipriani,et al.  Quickly Getting the Best Data from Your Macromolecular Crystals with a New Generation of Beamline Instruments , 2007 .

[6]  A. Wagner,et al.  Low-energy X-ray detection with an in-vacuum PILATUS detector , 2011 .

[7]  Keith Henderson,et al.  In-vacuum long-wavelength macromolecular crystallography , 2016, Acta crystallographica. Section D, Structural biology.

[8]  L. Caputi,et al.  The crystal structure of Erwinia amylovora levansucrase provides a snapshot of the products of sucrose hydrolysis trapped into the active site. , 2015, Journal of structural biology.

[10]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[11]  Andrea Schmidt,et al.  A tutorial for learning and teaching macromolecular crystallography , 2008 .

[12]  S. Crennell,et al.  A novel β-xylosidase structure from Geobacillus thermoglucosidasius: the first crystal structure of a glycoside hydrolase family GH52 enzyme reveals unpredicted similarity to other glycoside hydrolase folds. , 2014, Acta crystallographica. Section D, Biological crystallography.

[13]  J. Helliwell,et al.  S-SWAT (softer single-wavelength anomalous technique): potential in high-throughput protein crystallography. , 2003, Acta crystallographica. Section A, Foundations of crystallography.

[14]  D. Barford,et al.  Data collection with a tailored X-ray beam size at 2.69 Å wavelength (4.6 keV): sulfur SAD phasing of Cdc23Nterm , 2016, Acta crystallographica. Section D, Structural biology.

[15]  Stephen Corcoran,et al.  A 7 µm mini-beam improves diffraction data from small or imperfect crystals of macromolecules , 2008, Acta crystallographica. Section D, Biological crystallography.

[16]  Gordon A Leonard,et al.  ID29: a high-intensity highly automated ESRF beamline for macromolecular crystallography experiments exploiting anomalous scattering. , 2012, Journal of synchrotron radiation.

[17]  G. R. Andersen,et al.  Structural basis for the targeting of complement anaphylatoxin C5a using a mixed L-RNA/L-DNA aptamer , 2015, Nature Communications.

[18]  A. Steinbüchel,et al.  3-Sulfinopropionyl-coenzyme A (3SP-CoA) desulfinase from Advenella mimigardefordensis DPN7T: crystal structure and function of a desulfinase with an acyl-CoA dehydrogenase fold , 2015, Acta crystallographica. Section D, Biological crystallography.

[19]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[20]  Olof Svensson,et al.  ISPyB: an information management system for synchrotron macromolecular crystallography , 2011, Bioinform..

[21]  H. Schulte-Schrepping,et al.  Status of PETRA III photon beamline frontends and optical systems , 2013 .

[22]  A. Rentmeister,et al.  Structural Elucidation of the Bispecificity of A Domains as a Basis for Activating Non-natural Amino Acids. , 2015, Angewandte Chemie.

[23]  F Cipriani,et al.  Automation of sample mounting for macromolecular crystallography. , 2006, Acta crystallographica. Section D, Biological crystallography.

[24]  Thomas R. Schneider,et al.  HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs , 2004 .

[25]  E. Weckert,et al.  Technical Report: PETRA III: DESY's New High Brilliance Third Generation Synchrotron Radiation Source , 2006 .

[26]  L. Mazzei,et al.  Fluoride inhibition of Sporosarcina pasteurii urease: structure and thermodynamics , 2014, JBIC Journal of Biological Inorganic Chemistry.

[27]  E. Girard,et al.  Using lanthanoid complexes to phase large macromolecular assemblies , 2010, Journal of synchrotron radiation.

[28]  A. Wagner,et al.  Performance of PILATUS detector technology for long-wavelength macromolecular crystallography , 2011 .

[29]  Stephane Boivin,et al.  An integrated pipeline for sample preparation and characterization at the EMBL@PETRA3 synchrotron facilities. , 2016, Methods.

[30]  P. Grudnik,et al.  Investigation of Serine‐Proteinase‐Catalyzed Peptide Splicing in Analogues of Sunflower Trypsin Inhibitor 1 (SFTI‐1) , 2015, Chembiochem : a European journal of chemical biology.

[31]  Christian Morawe,et al.  The ID23-2 structural biology microfocus beamline at the ESRF , 2009, Journal of synchrotron radiation.

[32]  B. Stauch,et al.  Open and closed states of Candida antarctica lipase B: protonation and the mechanism of interfacial activation1 , 2015, Journal of Lipid Research.

[33]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[34]  L. Mazzei,et al.  Inactivation of urease by 1,4-benzoquinone: chemistry at the protein surface. , 2016, Dalton transactions.

[35]  R. Kahn,et al.  A dipicolinate lanthanide complex for solving protein structures using anomalous diffraction. , 2010, Acta crystallographica. Section D, Biological crystallography.

[36]  R. Ficner,et al.  eIF5B employs a novel domain release mechanism to catalyze ribosomal subunit joining , 2014, The EMBO journal.

[37]  Yusuke Yamada,et al.  On the influence of crystal size and wavelength on native SAD phasing. , 2016, Acta crystallographica. Section D, Structural biology.

[38]  W. Hendrickson,et al.  Multiwavelength anomalous diffraction analysis at the M absorption edges of uranium , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Tavernier,et al.  Structural basis of the proinflammatory signaling complex mediated by TSLP , 2014, Nature Structural &Molecular Biology.