Joint Majorization-Minimization for Nonnegative Matrix Factorization with the β-divergence

[1]  Takayuki Okuno,et al.  Majorization-minimization-based Levenberg–Marquardt method for constrained nonlinear least squares , 2020, Computational Optimization and Applications.

[2]  Mingyi Hong,et al.  Stochastic Mirror Descent for Low-Rank Tensor Decomposition Under Non-Euclidean Losses , 2021, IEEE Transactions on Signal Processing.

[3]  Nico Vervliet,et al.  A Second-Order Method for Fitting the Canonical Polyadic Decomposition With Non-Least-Squares Cost , 2020, IEEE Transactions on Signal Processing.

[4]  T. Oberlin,et al.  Ordinal Non-negative Matrix Factorization for Recommendation , 2020, ICML.

[5]  Xiao Wang,et al.  Convergence to Second-Order Stationarity for Non-negative Matrix Factorization: Provably and Concurrently , 2020, ArXiv.

[6]  Peter Ochs,et al.  Beyond Alternating Updates for Matrix Factorization with Inertial Bregman Proximal Gradient Algorithms , 2019, NeurIPS.

[7]  Wing-Kin Ma,et al.  Nonnegative Matrix Factorization for Signal and Data Analytics: Identifiability, Algorithms, and Applications , 2018, IEEE Signal Processing Magazine.

[8]  Norikazu Takahashi,et al.  A unified global convergence analysis of multiplicative update rules for nonnegative matrix factorization , 2018, Comput. Optim. Appl..

[9]  Marc Teboulle,et al.  First Order Methods beyond Convexity and Lipschitz Gradient Continuity with Applications to Quadratic Inverse Problems , 2017, SIAM J. Optim..

[10]  Gaël Varoquaux,et al.  Stochastic Subsampling for Factorizing Huge Matrices , 2017, IEEE Transactions on Signal Processing.

[11]  Vincent Y. F. Tan,et al.  A Unified Convergence Analysis of the Multiplicative Update Algorithm for Regularized Nonnegative Matrix Factorization , 2016, IEEE Transactions on Signal Processing.

[12]  Prabhu Babu,et al.  Majorization-Minimization Algorithms in Signal Processing, Communications, and Machine Learning , 2017, IEEE Transactions on Signal Processing.

[13]  Nicolas Dobigeon,et al.  Nonlinear Hyperspectral Unmixing With Robust Nonnegative Matrix Factorization , 2014, IEEE Transactions on Image Processing.

[14]  Paris Smaragdis,et al.  Static and Dynamic Source Separation Using Nonnegative Factorizations: A unified view , 2014, IEEE Signal Processing Magazine.

[15]  Alain Rakotomamonjy,et al.  Direct Optimization of the Dictionary Learning Problem , 2013, IEEE Transactions on Signal Processing.

[16]  Zhi-Quan Luo,et al.  A Unified Convergence Analysis of Block Successive Minimization Methods for Nonsmooth Optimization , 2012, SIAM J. Optim..

[17]  Zhigang Luo,et al.  NeNMF: An Optimal Gradient Method for Nonnegative Matrix Factorization , 2012, IEEE Transactions on Signal Processing.

[18]  Antonio J. Plaza,et al.  Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[19]  Erkki Oja,et al.  Unified Development of Multiplicative Algorithms for Linear and Quadratic Nonnegative Matrix Factorization , 2011, IEEE Transactions on Neural Networks.

[20]  Jérôme Idier,et al.  Algorithms for Nonnegative Matrix Factorization with the β-Divergence , 2010, Neural Computation.

[21]  Sergio Cruces,et al.  Generalized Alpha-Beta Divergences and Their Application to Robust Nonnegative Matrix Factorization , 2011, Entropy.

[22]  Thierry Bertin-Mahieux,et al.  The Million Song Dataset , 2011, ISMIR.

[23]  Ana de Almeida,et al.  Nonnegative Matrix Factorization , 2018 .

[24]  H. Kameoka,et al.  Convergence-guaranteed multiplicative algorithms for nonnegative matrix factorization with β-divergence , 2010, 2010 IEEE International Workshop on Machine Learning for Signal Processing.

[25]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[26]  Nancy Bertin,et al.  Nonnegative Matrix Factorization with the Itakura-Saito Divergence: With Application to Music Analysis , 2009, Neural Computation.

[27]  Yifan Hu,et al.  Collaborative Filtering for Implicit Feedback Datasets , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[28]  Michael W. Berry,et al.  Algorithms and applications for approximate nonnegative matrix factorization , 2007, Comput. Stat. Data Anal..

[29]  Raul Kompass,et al.  A Generalized Divergence Measure for Nonnegative Matrix Factorization , 2007, Neural Computation.

[30]  R. Steele,et al.  Optimization , 2005, Encyclopedia of Biometrics.

[31]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[32]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[33]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.