Lunar Terrain and Albedo Reconstruction from Apollo Imagery

Generating accurate three dimensional planetary models and albedo maps is becoming increasingly more important as NASA plans more robotics missions to the Moon in the coming years. This paper describes a novel approach for separation of topography and albedo maps from orbital Lunar images. Our method uses an optimal Bayesian correlator to refine the stereo disparity map and generate a set of accurate digital elevation models (DEM). The albedo maps are obtained using a multi-image formation model that relies on the derived DEMs and the Lunar- Lambert reflectance model. The method is demonstrated on a set of high resolution scanned images from the Apollo era missions.

[1]  Richard Szeliski,et al.  Sampling the disparity space image , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[3]  Larry H. Matthies,et al.  Stereo vision and shadow analysis for landing hazard detection , 2008, 2008 IEEE International Conference on Robotics and Automation.

[4]  Daniel Snow,et al.  Shape and albedo from multiple images using integrability , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  A. McEwen Photometric functions for photoclinometry and other applications , 1991 .

[6]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[7]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[8]  Javier Gonzalez,et al.  Shadow detection in colour high‐resolution satellite images , 2008 .

[9]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[10]  Michael Broxton,et al.  A bayesian formulation for sub-pixel refinement in stereo orbital imagery , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[11]  Terry Caelli,et al.  Bayesian Stereo Matching , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[12]  Larry H. Matthies,et al.  Attenuating stereo pixel-locking via affine window adaptation , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[13]  A. McEwen Exogenic and endogenic albedo and color patterns on Europa , 1986 .

[14]  Mark S. Robinson,et al.  The Apollo Digtal Image Archive: New Research and Data Products , 2008 .

[15]  Daniel J. Scheeres,et al.  Characterizing and navigating small bodies with imaging data , 2006 .

[16]  M. Minnaert The reciprocity principle in lunar photometry , 1941 .

[17]  Szymon Rusinkiewicz,et al.  Improved sub-pixel stereo correspondences through symmetric refinement , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[18]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[19]  A. McEwen A Precise Lunar Photometric Function , 1996 .

[20]  H. K. Nishihara,et al.  PRISM: A Practical Mealtime Imaging Stereo Matcher , 1984, Other Conferences.

[21]  Christian Menard,et al.  Robust Stereo and Adaptive Matching in Correlation Scale-Space , 1997 .