Collectives of automata in labyrinths

The behaviour of automata in labyrinths is a rather new field of automata theory, but more than one hundred papers devoted to this topic have been published. In this paper, we consider the key notions, problems, achievements, methods to solve problems, and open problems related to an important direction of this field, the behaviour of collectives of automata in labyrinths. In a series of cases, we give base assertions in a more strong form and give a more general presentation than the authors of the corresponding papers do. New results are also contained in this survey.

[1]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[2]  M. Blum,et al.  Automata on a 2-Dimensional Tape , 1967, SWAT.

[3]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[4]  Azriel Rosenfeld,et al.  Array Automata and Array Grammars , 1971, IFIP Congress.

[5]  John Mylopoulos,et al.  On the application of formal language and automata theory to pattern recognition , 1972, Pattern Recognit..

[6]  JOHN MYLOPOULOS On the recognition of topological invariants by 4-way finite automata , 1972, Comput. Graph. Image Process..

[7]  Walter J. Savitch,et al.  Maze Recognizing Automata and Nondeterministic Tape Complexity , 1973, J. Comput. Syst. Sci..

[8]  Anupam N. Shah Pebble automata on arrays , 1974, Comput. Graph. Image Process..

[9]  David L. Milgram A Region Crossing Problem for Array-Bounded Automata , 1976, Inf. Control..

[10]  M. Blum,et al.  On the capability of finite automata in 2 and 3 dimensional space , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[11]  Günter Asser Bemerkungen zum Labyrinth-Problem , 1977, J. Inf. Process. Cybern..

[12]  Manuel Blum,et al.  On the power of the compass (or, why mazes are easier to search than graphs) , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[13]  Jan Mares Conditional programmed automata , 1978, Kybernetika.

[14]  Katsushi Inoue,et al.  A Note on Two-Dimensional Finite Automata , 1978, Inf. Process. Lett..

[15]  Katsushi Inoue,et al.  Two-dimensional finite automata and unacceptable functions , 1979 .

[16]  Dexter Kozen,et al.  Automata and planar graphs , 1979, International Symposium on Fundamentals of Computation Theory.

[17]  Katsushi Inoue,et al.  A Note on Decision Problems for Three-Way Two-Dimensional Finite Automata , 1980, Inf. Process. Lett..

[18]  Lothar Budach,et al.  Two Pebbles Don't Suffice , 1981, MFCS.

[19]  Frank Hoffmann One Pebble Does Not Suffice to Search Plane Labyrinths , 1981, FCT.

[20]  Andrzej Szepietowski,et al.  A Finite 5-Pebble-Automaton Can Search Every Maze , 1982, Inf. Process. Lett..

[21]  Andrzej Szepietowski Remarks on Searching Labyrinths by Automata , 1983, FCT.

[22]  Armin Hemmerling,et al.  On Searching of Special Cases of Mazes and Finite Embedded Graphs , 1984, MFCS.

[23]  Efim B. Kinber Three-way automata on rectangular tapes over a one-letter alphabet , 1985, Inf. Sci..

[24]  Armin Hemmerling Remark on the Power of Compass (Extended Abstract) , 1986, MFCS.

[25]  Armin Hemmerling 1-Pointer Automata Searching Finite Plane Graphs , 1986, Math. Log. Q..

[26]  Armin Hemmerling Three-Dimensional Traps and Barrages for Cooperating Automata (Extended Abstract) , 1987, FCT.

[27]  Armin Hemmerling,et al.  Pebble Automata in Labyrinths with Rotation Systems , 1991, Math. Log. Q..

[28]  G. Kilibarda On the minimum universal collectives of automata for plane labyrinths , 1993 .

[29]  G. Kilibarda,et al.  On behaviour of automata in labyrinths , 1993 .

[30]  G. Kilibarda,et al.  Independent systems of automata in labyrinths , 2003 .

[31]  Hans-Anton Rollik,et al.  Automaten in planaren Graphen , 1979, Acta Informatica.