Multilevel Preconditioning
暂无分享,去创建一个
[1] E. Stein. Singular Integrals and Di?erentiability Properties of Functions , 1971 .
[2] S. Nikol,et al. Approximation of Functions of Several Variables and Imbedding Theorems , 1975 .
[3] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[4] Wolfgang Dahmen,et al. Multidimensional Spline Approximation , 1980 .
[5] Klaus Höllig,et al. B-splines from parallelepipeds , 1982 .
[6] C. Micchelli,et al. Recent Progress in multivariate splines , 1983 .
[7] Jaak Peetre,et al. Function spaces on subsets of Rn , 1984 .
[8] R. DeVore,et al. Free multivariate splines , 1987 .
[9] R. DeVore,et al. Interpolation of Besov-Spaces , 1988 .
[10] Peter Oswald,et al. On Function Spaces Related to Finite Element Approximation Theory , 1990 .
[11] Harry Yserentant,et al. Two preconditioners based on the multi-level splitting of finite element spaces , 1990 .
[12] C. Chui,et al. Compactly supported box-spline wavelets , 1992 .
[13] Zuowei Shen,et al. Wavelets and pre-wavelets in low dimensions , 1992 .
[14] S. Jaffard. Wavelet methods for fast resolution of elliptic problems , 1992 .
[15] E Weinan,et al. Hierarchical method for elliptic problems using wavelet , 1992 .
[16] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[17] C. Micchelli,et al. Using the refinement equation for evaluating integrals of wavelets , 1993 .
[18] Wolfgang Dahmen,et al. C 1 -hierarchical bases , 1994 .