Multi-technology Products

Development of technical solutions that lead to widening the use of multi-technological products as well as in assessing ecological and economic potentials of multi-technological products have not yet been studied intensively. The activities conducted in the context of this research area focus on these aspects. The aforementioned aspects have been examined, evaluated and quantified on the basis of three example products resulting from the first funding period. The research activities conducted on the example components deliver the basis for the layout of different integrated multi-technology production systems. Technical solutions that enable coupling of different process steps with each other as well as the integration of different functionalities and different materials in final multi-technology products have been proposed. The complex interdependencies of the products themselves and their associated production processes have been researched and evaluated intensively. Finally, a profitability assessment of the proposed solutions was conducted and future research topics identified.

[1]  Johannes Schönberger,et al.  Thermisches Direktfügen von Metall und Kunststoff : eine Alternative zur Klebtechnik? , 2012 .

[2]  A. Kimura,et al.  Anisotropic lattice expansion and shrinkage of hexagonal TiAlN and CrAlN films , 2003 .

[3]  Michael Kübler,et al.  The reflectivity, wettability and scratch durability of microsurface features molded in the injection molding process using a dynamic tool tempering system , 2011 .

[4]  Arnold Gillner,et al.  Fabrication of hierarchical structures by direct laser writing and multi-beam-interference , 2013 .

[5]  Aiguo Liu,et al.  Arc sprayed erosion-resistant coating for carbon fiber reinforced polymer matrix composite substrates , 2006 .

[6]  Dimitri Debruyne,et al.  Assessment of Measuring Errors in Strain Fields Obtained via DIC on Planar Sheet Metal Specimens with a Non-Perpendicular Camera Alignment , 2011 .

[7]  Frank Wyrowski,et al.  Introduction to field tracing , 2011 .

[8]  Julio Chaves,et al.  Introduction to Nonimaging Optics , 2008 .

[9]  Xinran Xiao,et al.  Dynamic tensile testing of plastic materials , 2008 .

[10]  Mark F. Horstemeyer,et al.  An internal state variable material model for predicting the time, thermomechanical, and stress state dependence of amorphous glassy polymers under large deformation , 2013 .

[11]  A. Krämer,et al.  Wear behavior of Cr1−xAlxN PVD-coatings in dry running conditions , 2007 .

[12]  O. Ozcan,et al.  Influence of HPPMS pulse length and inert gas mixture on the properties of (Cr,Al)N coatings , 2013 .

[13]  K. Bobzin,et al.  Influence of Process Parameter on Grit Blasting as a Pretreatment Process for Thermal Spraying , 2015, Journal of Thermal Spray Technology.

[14]  J. Meinhardt,et al.  Surface modification for improved adhesion of a polymer–metal compound , 1999 .

[15]  Manas Chanda,et al.  Plastics technology handbook , 1987 .

[16]  Tiejun Wang,et al.  Rate-dependent large deformation behavior of PC/ABS , 2009 .

[17]  Ramón Zaera,et al.  An analysis of microstructural and thermal softening effects in dynamic necking , 2015 .

[18]  S. Kolling,et al.  SAMP-1: A Semi-Analytical Model for the Simulation of Polymers , 2005 .

[19]  Stephan Bäumler,et al.  Hybrid Production Systems , 2012 .

[20]  Ali Khatibi,et al.  Structural and mechanical properties of Cr–Al–O–N thin films grown by cathodic arc deposition , 2012 .

[21]  Frank Gärtner,et al.  Microstructures and key properties of cold-sprayed and thermally sprayed copper coatings , 2006 .

[22]  Lin Yuanhui,et al.  フォトレジスト上のパリレンC(POP):ポリマー/金属ナノワイヤ製造のための低温スペーサ技術 , 2011 .

[23]  Cem Celal Tutum,et al.  The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024-T3 , 2013 .

[24]  Alexander Verl,et al.  Generative Fertigung mit Kunststoffen , 2013 .

[25]  Linfa Peng,et al.  Micro hot embossing of thermoplastic polymers: a review , 2013 .

[26]  Nazlim Bagcivan,et al.  Synthesis of nano-structured HPPMS CrN/AlN coatings , 2013 .

[27]  Nazlim Bagcivan,et al.  (Cr1 − xAlx)N: A comparison of direct current, middle frequency pulsed and high power pulsed magnetron sputtering for injection molding components , 2013 .

[28]  K. Bobzin,et al.  Development of (Cr,Al)ON coatings using middle frequency magnetron sputtering and investigations on tribological behavior against polymers , 2014 .

[29]  Stuart A. Boden,et al.  Tunable reflection minima of nanostructured antireflective surfaces , 2008 .

[30]  K. Bobzin,et al.  Mechanical properties and oxidation behaviour of (Al,Cr)N and (Al,Cr,Si)N coatings for cutting tools deposited by HPPMS , 2008 .

[31]  Maximilian Schöngart,et al.  Crash simulation of hybrid structures considering the stress and strain rate dependent material behavior of thermoplastic materials , 2015 .

[32]  P. M. Martin,et al.  Introduction to Surface Engineering and Functionally Engineered Materials: Martin/Introduction , 2011 .

[33]  Erwin Bürkle In drei Sekunden von 100 auf 140 Grad , 2007 .

[34]  Walter Michaeli,et al.  Entwicklung einer Anlagen- und Prozesstechnik für die Herstellung superhydrophober Oberflächen im Spritzgießverfahren , 2010 .

[35]  Christian Hopmann,et al.  Determination of strain rate dependent material data for FEA crash simulation of polymers using digital image correlation , 2015 .

[36]  Wen-Bin Young,et al.  Experimental Study on the Filling of Nano Structures with Infrared Mold Surface Heating , 2011 .

[37]  Carl Klason,et al.  Physical aging time scales and rates for poly(vinyl acetate) stimulated mechanically in the Tg-region , 1996 .

[38]  Stefan Glaser,et al.  Kunststoff und Metall im festen Verbund. Verbindungstechnik für Kunststoff-Metall-Hybridstrukturen , 2002 .

[39]  Liviu Marsavina,et al.  Tensile properties of semi-crystalline thermoplastic polymers: Effects of temperature and strain rates , 2013 .

[40]  A. Ludwig,et al.  CrN/AlN nanolaminate coatings deposited via high power pulsed and middle frequency pulsed magnetron sputtering , 2014 .

[41]  Sum Huan Ng,et al.  Hot roller embossing for microfluidics: process and challenges , 2009 .

[42]  Josef Giessauf,et al.  Die variotherme Temperierung wird produktionstauglich , 2008 .

[43]  Paul Gannon,et al.  Oxidation studies of CrAlON nanolayered coatings on steel plates , 2006 .

[44]  Lin-Yao Liao,et al.  Dynamic Backlight Gamma on High Dynamic Range LCD TVs , 2008, Journal of Display Technology.

[45]  Xianting Zeng,et al.  Structural, mechanical and tribological properties of CrAlN coatings deposited by reactive unbalanced magnetron sputtering , 2005 .

[46]  E. Lugscheider,et al.  (Cr1-x,Alx)N ein Review über ein vielseitig einsetzbares Schichtsystem† , 2006 .

[47]  Robald Aluminium‐Taschenbuch, 12. Aufl., 832 S., 384 Abb. und 176 Tafeln, herausgeg. von der Aluminium‐Zentrale e. V., Düsseldorf, 1963 Aluminium‐Verlag G.m.b.H., Düsseldorf, Geb. Preis 29,60 DM , 1964 .

[48]  John Lambros,et al.  Strain rate effects on the thermomechanical behavior of polymers , 2001 .

[49]  Nazlim Bagcivan,et al.  PVD—Coatings in Injection Molding Machines for Processing Optical Polymers , 2007 .

[50]  Luc Chevalier,et al.  Strain Field Measurement on 3D Surfaces: Application to Petaloid Base of PET Bottles under Pressure , 2010 .

[51]  François Robitaille,et al.  Metallic coating of aerospace carbon/epoxy composites by the pulsed gas dynamic spraying process , 2009 .

[52]  Jörg Vetter,et al.  (Cr:Al)N coatings deposited by the cathodic vacuum are evaporation , 1998 .

[53]  J. Friedrich,et al.  Untersuchungen zur Plasmaätzung von Polymeren. V. Plasmaätzung von Styrenpolymeren , 1981 .

[54]  Martin Veidt,et al.  Reflection of structural waves at a solid/liquid interface. , 2003, Ultrasonics.

[55]  Kirsten Bobzin,et al.  Investigations of mechanical and tribological properties of CrAlN+C thin coatings deposited on cutting tools , 2003 .

[56]  Christian Hopmann,et al.  On the Origin and Handling of the Force Oscillation Phenomenon in Tensile Impact Testing of Polymer Materials , 2016 .

[57]  Timon Rabczuk,et al.  The tensile and shear failure behavior dependence on chain length and temperature in amorphous polymers , 2013 .

[58]  J. Karger‐Kocsis,et al.  Toward understanding the stress oscillation phenomenon in polymers due to tensile impact loading , 2001 .

[59]  Said Ahzi,et al.  Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress , 2006 .

[60]  Johan Ahlström,et al.  Temperature and strain rate effects on the mechanical behavior of dual phase steel , 2015 .

[61]  Robert D. Weed,et al.  Copper and Copper Alloys , 2015 .

[62]  André Chrysochoos,et al.  Calorimetric consequences of thermal softening in Johnson-Cook's model , 2013 .

[63]  Dilbag Singh,et al.  LONGITUDINAL WAVES AT A MICROPOLAR FLUID/SOLID INTERFACE , 2008 .

[64]  James W. Bradley,et al.  Pulsed magnetron sputtering - process overview and applications , 2009 .

[65]  F. Hanzawa Lens Films and Reflective Polarization Films , 2009 .

[66]  Jochen Stollenwerk,et al.  Algorithm for irradiance tailoring using multiple freeform optical surfaces. , 2012, Optics express.