Phase Transition for the Maki–Thompson Rumour Model on a Small-World Network
暂无分享,去创建一个
Elena Agliari | Flavia Tavani | Angelica Pachon | E. Agliari | F. Tavani | P. Rodríguez | A. Pachón | Pablo M. Rodriguez | Angélica Pachón
[1] Gaston H. Gonnet,et al. On the LambertW function , 1996, Adv. Comput. Math..
[2] M. Kosfeld. Rumours and Markets , 2005 .
[3] H. M. Taylor,et al. An introduction to stochastic modeling , 1985 .
[4] Yamir Moreno,et al. Dynamics of rumor spreading in complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[5] R. Watson. On the size of a rumour , 1987 .
[6] D. Zanette. Dynamics of rumor propagation on small-world networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[7] Elena Agliari,et al. Word-of-mouth and dynamical inhomogeneous markets: Efficiency measure and optimal sampling policies for the pre-launch stage , 2009 .
[8] Allan J. Kimmel. Rumors and the Financial Marketplace , 2004 .
[9] Rinaldo B. Schinazi,et al. A Spatial Stochastic Model for Rumor Transmission , 2012, 1202.4019.
[10] M. Dwass. The total progeny in a branching process and a related random walk , 1969, Journal of Applied Probability.
[11] E. Todeva. Networks , 2007 .
[12] R. Durrett. Probability: Theory and Examples , 1993 .
[13] M. Newman. Spread of epidemic disease on networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[14] H. Bunke,et al. T. E. Harris, The Theory of Branching Processes (Die Grundlehren der mathematischen Wissenschaften, Band 119). XVI + 230 S. m. 6 Fig. Berlin/Göttingen/Heidelberg 1963. Springer‐Verlag. Preis geb. DM 36,— , 1965 .
[15] Y. Moreno,et al. Epidemic outbreaks in complex heterogeneous networks , 2001, cond-mat/0107267.
[16] Kenneth Dixon,et al. Introduction to Stochastic Modeling , 2011 .
[17] S. N. Dorogovtsev,et al. Evolution of networks , 2001, cond-mat/0106144.
[18] Yamir Moreno,et al. Theory of Rumour Spreading in Complex Social Networks , 2007, ArXiv.
[19] Alessandro Vespignani,et al. Dynamical Processes on Complex Networks , 2008 .
[20] E. Lebensztayn,et al. On the behaviour of a rumour process with random stifling , 2010, Environ. Model. Softw..
[21] E. Lebensztayn,et al. A large deviations principle for the Maki–Thompson rumour model , 2014, 1411.5614.
[22] D Cassi,et al. Universal features of information spreading efficiency on d-dimensional lattices. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[23] A. Sudbury. The proportion of the population never hearing a rumour , 1985 .
[24] M. Newman,et al. Renormalization Group Analysis of the Small-World Network Model , 1999, cond-mat/9903357.
[25] D. Zanette. Critical behavior of propagation on small-world networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[26] J. Gani. The Maki-Thompson rumour model: a detailed analysis , 2000, Environ. Model. Softw..
[27] Daniel P. Maki,et al. Mathematical models and applications : with emphasis on the social, life, and management sciences , 1973 .
[28] A. Noymer,et al. The transmission and persistence of ‘urban legends’: Sociological application of age‐structured epidemic models , 2001, The Journal of mathematical sociology.
[29] B. Pittel. ON A DALEY-KENDALL MODEL OF RANDOM RUMOURS , 1990 .
[30] Claude Lefèvre,et al. Distribution of the final extent of a rumour process , 1994 .
[31] Daniel P Maki,et al. Mathematical models and applications , 1973 .
[32] Alessandro Vespignani,et al. Epidemic spreading in scale-free networks. , 2000, Physical review letters.
[33] S. Lalley,et al. Contact Processes on Random Regular Graphs , 2015, 1502.07421.
[34] Y. Moreno,et al. Resilience to damage of graphs with degree correlations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[35] A. Barra,et al. Criticality in diluted ferromagnets , 2008, 0804.4503.
[36] M. Newman,et al. Scaling and percolation in the small-world network model. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[37] K. Athreya,et al. Multi-Type Branching Processes , 1972 .
[38] E. Lebensztayn,et al. Limit Theorems for a General Stochastic Rumour Model , 2011, SIAM J. Appl. Math..