High accuracy absorption coefficients for the Orbiting Carbon Observatory-2 (OCO-2) mission: Validation of updated carbon dioxide cross-sections using atmospheric spectra

Abstract The accuracy of atmospheric trace gas retrievals depends directly on the accuracy of the molecular absorption model used within the retrieval algorithm. For remote sensing of well-mixed gases, such as carbon dioxide (CO 2 ), where the atmospheric variability is small compared to the background, the quality of the molecular absorption model is key. Recent updates to the 1.6 µm and 2.06 µm CO 2 absorption model used within the Orbiting Carbon Observatory (OCO-2) algorithm are described and validated. A set of 164 atmospheric spectra from the Total Carbon Column Observing Network (TCCON) is used to compare three models, both previous and current versions of absorption coefficient tables (largely derived from recent multispectrum fitting analyses targeted specifically at these bands) as well as a recent model constructed to use the HITRAN 2012 compilation. Both spectral residuals and retrieved column-averaged CO 2 mixing ratios (XCO 2 ) are included in the comparison. Absorption coefficients based on the updated multispectrum fitting analyses provide residuals comparable to or smaller than either the previous version of the multispectrum fits or the HITRAN 2012-based model. For the 2.06 µm band the updated model finds noticeably lower residuals for low water content cases. It is found that apart from a scaling factor the prior and updated absorption models result in similar retrieved values of XCO 2 for the 2.06 µm band and a slightly different airmass dependence for the 1.6 µm band.

[1]  Christopher W. O'Dell,et al.  Performance of a geostationary mission, geoCARB, to measure CO 2 , CH 4 and CO column-averaged concentrations , 2013 .

[2]  P. Čermák,et al.  The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 μm. , 2015, Physical chemistry chemical physics : PCCP.

[3]  David Crisp,et al.  Precision requirements for space-based XCO2 data , 2007 .

[4]  Ha Tran,et al.  Influence of line mixing on the retrievals of atmospheric CO 2 from spectra in the 1.6 and 2.1 μm regions , 2009 .

[5]  David D. Turner,et al.  Evaluation of two Vaisala RS92 radiosonde solar radiative dry bias correction algorithms , 2015 .

[6]  Keeyoon Sung,et al.  Multispectrum analysis of the oxygen A-band. , 2016, Journal of Quantitative Spectroscopy and Radiative Transfer.

[7]  D. Wunch,et al.  Improving atmospheric CO 2 retrievals using line mixing and speed-dependence when fitting high-resolution ground-based solar spectra , 2016 .

[8]  D. Long,et al.  Observations of Dicke narrowing and speed dependence in air-broadened CO₂ lineshapes near 2.06 μm. , 2014, The Journal of chemical physics.

[9]  Keeyoon Sung,et al.  Line parameters including temperature dependences of air- and self-broadened line shapes of 12 C 16 O 2 : 2.06-μm region , 2016 .

[10]  Jean-Michel Hartmann,et al.  An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes , 2013 .

[11]  Laurence S. Rothman,et al.  Updated database plus software for line-mixing in CO2 infrared spectra and their test using laboratory spectra in the 1.5–2.3 μm region , 2010 .

[12]  S. Tashkun,et al.  A room temperature CO2 line list with ab initio computed intensities , 2016, 1601.05334.

[13]  Keeyoon Sung,et al.  Line parameters including temperature dependences of self- and air-broadened line shapes of 12 C 16 O 2 : 1.6-μm region , 2016 .

[14]  G. Toon,et al.  Carbon dioxide column abundances at the Wisconsin Tall Tower site , 2006 .

[15]  J. Hodges,et al.  Standard photoacoustic spectrometer: model and validation using O2 A-band spectra. , 2010, The Review of scientific instruments.

[16]  Jean-Michel Hartmann,et al.  Erratum to "Efficient computation of some speed-dependent isolated line profiles" ( J. Quant. Spectrosc. Radiat. Transfer 129 (2013) 199-203) , 2014 .

[17]  Brian J. Connor,et al.  GFIT2: an experimental algorithm for vertical profile retrieval from near-IR spectra , 2015 .

[18]  Laurence S. Rothman,et al.  HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data , 2016 .

[19]  Jean-Michel Hartmann,et al.  CO2 line-mixing database and software update and its tests in the 2.1μm and 4.3μm regions , 2015 .

[20]  François-Marie Bréon,et al.  Contribution of the Orbiting Carbon Observatory to the estimation of CO2 sources and sinks: Theoretical study in a variational data assimilation framework , 2007 .

[21]  Justus Notholt,et al.  The Total Carbon Column Observing Network , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  V. M. Devi,et al.  A multispectrum nonlinear least squares fitting technique , 1995 .

[23]  Holger Vömel,et al.  Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde , 2014 .

[24]  Manfred Birk,et al.  Voigt profile introduces optical depth dependent systematic errors - Detected in high resolution laboratory spectra of water , 2016 .

[25]  J. Hodges,et al.  High-Accuracy CO(2) Line Intensities Determined from Theory and Experiment. , 2015, Physical review letters.

[26]  Travis A. Smith,et al.  Ocean processes underlying surface clustering , 2016 .

[27]  Masakatsu Nakajima,et al.  Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. , 2009, Applied optics.

[28]  R. L. Hawkins,et al.  Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands , 1992 .

[29]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[30]  M. M. Shapiro,et al.  THE COLLISION-INDUCED FUNDAMENTAL AND FIRST OVERTONE BANDS OF OXYGEN AND NITROGEN , 1966 .

[31]  J. Placeholder,et al.  Documentation for the 2014 TCCON Data Release , 2015 .

[32]  V. Malathy Devi,et al.  Spectroscopic database of CO2 line parameters: 4300–7000 cm−1 , 2008 .

[33]  Rebecca Castano,et al.  The ACOS CO 2 retrieval algorithm – Part 1: Description and validation against synthetic observations , 2011 .

[34]  D. Romanini,et al.  Accurate laboratory determination of the near‐infrared water vapor self‐continuum: A test of the MT_CKD model , 2016 .

[35]  James McDuffie,et al.  Quantification of uncertainties in OCO-2 measurements of XCO 2 :simulations and linear error analysis , 2016 .

[36]  T. Borsdorff,et al.  Carbon monoxide total columns from SCIAMACHY 2.3 µm atmospheric reflectance measurements: towards a full-mission data product (2003–2012) , 2015 .

[37]  C. Sweeney,et al.  Lower-tropospheric CO 2 from near-infrared ACOS-GOSAT observations , 2016 .

[38]  Rebecca Castano,et al.  Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission , 2012 .

[39]  R. Freedman,et al.  Reliable infrared line lists for 13 CO2 isotopologues up to E′=18,000 cm−1 and 1500 K, with line shape parameters , 2014 .

[40]  Hang Zhang,et al.  Development and characterization of Carbon Observing Satellite , 2016 .

[41]  V. Malathy Devi,et al.  Line mixing and speed dependence in CO2 at 6227.9 cm−1: Constrained multispectrum analysis of intensities and line shapes in the 30013 ← 00001 band , 2007 .

[42]  Jean-Michel Hartmann,et al.  Spectra calculations in central and wing regions of CO2 IR bands. IV: software and database for the computation of atmospheric spectra , 2005 .

[43]  Igor Polonsky,et al.  Potential of a geostationary geoCARB mission to estimate surface emissions of CO 2 , CH 4 and CO in a polluted urban environment: casestudy Shanghai , 2016 .

[44]  J. Tennyson,et al.  Room temperature line lists for CO2 symmetric isotopologues with ab initio computed intensities , 2017, 1701.08267.

[45]  Kevin M. Smith,et al.  Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[46]  Samir Kassi,et al.  The water vapour self-continuum by CRDS at room temperature in the 1.6 µm transparency window , 2013 .

[47]  Scott C. Doney,et al.  Carbon source/sink information provided by column CO 2 measurements from the Orbiting Carbon Observatory , 2008 .

[49]  Jean-Michel Hartmann,et al.  Efficient computation of some speed-dependent isolated line profiles , 2013 .

[50]  Jonathan Tennyson,et al.  Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report) , 2014, 1409.7782.

[51]  Kendra L. Letchworth,et al.  RAPID AND ACCURATE CALCULATION OF THE VOIGT FUNCTION , 2007 .

[52]  J. Lamouroux,et al.  CDSD-296, high resolution carbon dioxide spectroscopic databank: Version for atmospheric applications , 2015 .

[53]  L. Brown,et al.  Fourier transform infrared spectroscopy measurements of H2O-broadened half-widths of CO2 at 4.3 μmThis article is part of a Special Issue on Spectroscopy at the University of New Brunswick in honour of Colan Linton and Ron Lees. , 2009 .

[54]  James B. Abshire,et al.  Calibration of the Total Carbon Column Observing Network using aircraft profile data , 2010 .

[55]  D. Mondelain,et al.  Temperature dependence of the water vapor self‐continuum by cavity ring‐down spectroscopy in the 1.6 µm transparency window , 2014 .

[56]  Yuk L. Yung,et al.  Vertically constrained CO2 retrievals from TCCON measurements , 2012 .

[57]  David Crisp,et al.  The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products , 2016 .

[58]  J. Hodges,et al.  Frequency-agile, rapid scanning cavity ring-down spectroscopy (FARS-CRDS) measurements of the (30012)←(00001) near-infrared carbon dioxide band , 2015 .

[59]  Keeyoon Sung,et al.  Line Parameters of Carbon Dioxide in the 4850 CM -1 Region , 2011 .