Genome sequencing and analysis reveals possible determinants of Staphylococcus aureus nasal carriage

BackgroundNasal carriage of Staphylococcus aureus is a major risk factor in clinical and community settings due to the range of etiologies caused by the organism. We have identified unique immunological and ultrastructural properties associated with nasal carriage isolates denoting a role for bacterial factors in nasal carriage. However, despite extensive molecular level characterizations by several groups suggesting factors necessary for colonization on nasal epithelium, genetic determinants of nasal carriage are unknown. Herein, we have set a genomic foundation for unraveling the bacterial determinants of nasal carriage in S. aureus.ResultsMLST analysis revealed no lineage specific differences between carrier and non-carrier strains suggesting a role for mobile genetic elements. We completely sequenced a model carrier isolate (D30) and a model non-carrier strain (930918-3) to identify differential gene content. Comparison revealed the presence of 84 genes unique to the carrier strain and strongly suggests a role for Type VII secretion systems in nasal carriage. These genes, along with a putative pathogenicity island (SaPIBov) present uniquely in the carrier strains are likely important in affecting carriage. Further, PCR-based genotyping of other clinical isolates for a specific subset of these 84 genes raise the possibility of nasal carriage being caused by multiple gene sets.ConclusionOur data suggest that carriage is likely a heterogeneic phenotypic trait and implies a role for nucleotide level polymorphism in carriage. Complete genome level analyses of multiple carriage strains of S. aureus will be important in clarifying molecular determinants of S. aureus nasal carriage.

[1]  H. Maibach,et al.  Competitive adherence as a mechanism of bacterial interference. , 1983, Canadian journal of microbiology.

[2]  D. Coleman,et al.  Enterotoxin production by Staphylococcus aureus isolates from cases of septicaemia and from healthy carriers. , 1989, Journal of Medical Microbiology.

[3]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[4]  J. Lazzaroni,et al.  Expression of the tolQRA genes of Escherichia coli K‐12 is controlled by the RcsC sensor protein involved in capsule synthesis , 1996, Molecular microbiology.

[5]  Z. Sidorczyk,et al.  Potential virulence factors of Proteus bacilli. , 1997, Microbiology and molecular biology reviews : MMBR.

[6]  T. Ganz,et al.  Innate Antimicrobial Activity of Nasal Secretions , 1999, Infection and Immunity.

[7]  B. Spratt,et al.  Multilocus sequence typing. , 1999, Trends in microbiology.

[8]  R. Lehrer,et al.  Purification and Properties of Proline-Rich Antimicrobial Peptides from Sheep and Goat Leukocytes , 1999, Infection and Immunity.

[9]  Richard I. Jaffe,et al.  Rapid Extraction from and Direct Identification in Clinical Samples of Methicillin-Resistant Staphylococci Using the PCR , 2000, Journal of Clinical Microbiology.

[10]  B. Spratt,et al.  Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. , 2000, Journal of clinical microbiology.

[11]  T. Ganz,et al.  Determinants of Staphylococcusaureus Nasal Carriage , 2001, Clinical Diagnostic Laboratory Immunology.

[12]  J. Kaneko,et al.  Phage conversion of Panton-Valentine leukocidin in Staphylococcus aureus: molecular analysis of a PVL-converting phage, phiSLT. , 2001, Gene.

[13]  Timothy J. Foster,et al.  Characterization of a Putative Pathogenicity Island from Bovine Staphylococcus aureus Encoding Multiple Superantigens , 2001, Journal of bacteriology.

[14]  T. Foster,et al.  Staphylococcus aureus clumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization , 2002, Cellular microbiology.

[15]  A. K. Saxena,et al.  The Role of the Staphylococcus Aureus Nasal Carriage and Type of Vascular Access in the Outcome of High-Risk Patients on Hemodialysis , 2002, The journal of vascular access.

[16]  A. Waring,et al.  Direct comparison of membrane interactions of model peptides composed of only Leu and Lys residues , 2003, Biopolymers.

[17]  A. Friedrich,et al.  Prevalence of Genes Encoding Pyrogenic Toxin Superantigens and Exfoliative Toxins among Strains of Staphylococcus aureus Isolated from Blood and Nasal Specimens , 2003, Journal of Clinical Microbiology.

[18]  A. Danchin,et al.  Genome‐based analysis of virulence genes in a non‐biofilm‐forming Staphylococcus epidermidis strain (ATCC 12228) , 2003, Molecular microbiology.

[19]  P. Carter,et al.  Coagulase gene variants associated with distinct populations of Staphylococcus aureus , 2003, Epidemiology and Infection.

[20]  Steven W. Taylor,et al.  Plicatamide, an Antimicrobial Octapeptide from Styela plicata Hemocytes* , 2003, The Journal of Biological Chemistry.

[21]  A. Pantosti,et al.  Identification of a variant "Rome clone" of methicillin-resistant Staphylococcus aureus with decreased susceptibility to vancomycin, responsible for an outbreak in an intensive care unit. , 2004, Microbial drug resistance.

[22]  T. Foster,et al.  Clumping Factor B, a Fibrinogen-binding MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules) Adhesin of Staphylococcus aureus, Also Binds to the Tail Region of Type I Cytokeratin 10* , 2004, Journal of Biological Chemistry.

[23]  Philip Hill,et al.  Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus , 2004, Molecular microbiology.

[24]  E. Feil,et al.  Analyses of clonality and the evolution of bacterial pathogens. , 2004, Current opinion in microbiology.

[25]  M. Holden,et al.  Staphylococcus aureus: superbug, super genome? , 2004, Trends in microbiology.

[26]  A. van Belkum,et al.  Human Factor in Staphylococcus aureus Nasal Carriage , 2004, Infection and Immunity.

[27]  A. Kearns,et al.  A virulence-associated gene microarray: a tool for investigation of the evolution and pathogenic potential of Staphylococcus aureus. , 2004, Microbiology.

[28]  J. Trawick,et al.  Genome-wide operon prediction in Staphylococcus aureus. , 2004, Nucleic acids research.

[29]  A. Friedrich,et al.  Systematic survey on the prevalence of genes coding for staphylococcal enterotoxins SElM, SElO, and SElN. , 2004, Molecular nutrition & food research.

[30]  B. Neumeister,et al.  Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections , 2004, Nature Medicine.

[31]  M. Enright,et al.  Vancomycin Susceptibility within Methicillin-resistant Staphylococcus aureus Lineages , 2004, Emerging infectious diseases.

[32]  C. Lämmler,et al.  Distribution of virulence genes of Staphylococcus aureus isolated from stable nasal carriers. , 2004, FEMS microbiology letters.

[33]  Samuel V. Angiuoli,et al.  Insights on Evolution of Virulence and Resistance from the Complete Genome Analysis of an Early Methicillin-Resistant Staphylococcus aureus Strain and a Biofilm-Producing Methicillin-Resistant Staphylococcus epidermidis Strain , 2005, Journal of bacteriology.

[34]  M. Hattori,et al.  Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  A. Ankai,et al.  Whole-Genome Sequencing of Staphylococcus haemolyticus Uncovers the Extreme Plasticity of Its Genome and the Evolution of Human-Colonizing Staphylococcal Species , 2005, Journal of bacteriology.

[36]  A. van Belkum,et al.  Major epidemic clones of Staphylococcus aureus in Nigeria. , 2005, Microbial drug resistance.

[37]  M. Enright,et al.  Seven Novel Variants of the Staphylococcal Chromosomal Cassette mec in Methicillin-Resistant Staphylococcus aureus Isolates from Ireland , 2005, Antimicrobial Agents and Chemotherapy.

[38]  D. Missiakas,et al.  EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  F. Vandenesch,et al.  Virulence determinants in Staphylococcus aureus and their involvement in clinical syndromes , 2005, Current infectious disease reports.

[40]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[41]  D. Smyth,et al.  Superantigen genes encoded by the egc cluster and SaPIbov are predominant among Staphylococcus aureus isolates from cows, goats, sheep, rabbits and poultry. , 2005, Journal of medical microbiology.

[42]  F. Vandenesch,et al.  Comparative prevalence of superantigen genes in Staphylococcus aureus isolates causing sepsis with and without septic shock. , 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[43]  R. Macaden,et al.  Genotyping of Methicillin-Resistant Staphylococcus aureus Strains from Two Hospitals in Bangalore, South India , 2005, Journal of Clinical Microbiology.

[44]  H. Seifert,et al.  Molecular Evolution of Methicillin-Resistant Staphylococcus aureus in the Metropolitan Area of Cologne, Germany, from 1984 to 1998 , 2005, Journal of Clinical Microbiology.

[45]  T. Foster,et al.  Immunization with Staphylococcus aureus Clumping Factor B, a Major Determinant in Nasal Carriage, Reduces Nasal Colonization in a Murine Model , 2006, Infection and Immunity.

[46]  A. Witney,et al.  Microarrays Reveal that Each of the Ten Dominant Lineages of Staphylococcus aureus Has a Unique Combination of Surface-Associated and Regulatory Genes , 2006, Journal of bacteriology.

[47]  G. Sensabaugh,et al.  Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus , 2006, The Lancet.

[48]  E. Reeves,et al.  Bacterial factors that mediate colonization of the stomach and virulence of Helicobacter pylori. , 2007, FEMS microbiology letters.

[49]  G. Gill,et al.  Methicillin-resistant Staphylococcus aureus (MRSA) isolation from diabetic foot ulcers correlates with nasal MRSA carriage. , 2007, Diabetes research and clinical practice.

[50]  T. Foster,et al.  The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. , 2007, Microbiology.

[51]  Ø. Langsrud,et al.  Acid-shock responses in Staphylococcus aureus investigated by global gene expression analysis. , 2007, Microbiology.

[52]  A. Friedrich,et al.  Deurenberg, R. H. et al. The molecular evolution of methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infect. 13, 222-235 , 2007 .

[53]  M. Gilmour,et al.  Interaction between the co-inherited TraG coupling protein and the TraJ membrane-associated protein of the H-plasmid conjugative DNA transfer system resembles chromosomal DNA translocases. , 2007, Microbiology.

[54]  A. Friedrich,et al.  The molecular evolution of methicillin-resistant Staphylococcus aureus. , 2007, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[55]  H. Zaraket,et al.  Molecular Characterization of Methicillin‐Resistant Staphylococcus aureus in Hospitals in Niigata, Japan: Divergence and Transmission , 2007, Microbiology and immunology.

[56]  J. Edgeworth,et al.  Rapid determination of hospital-acquired meticillin-resistant Staphylococcus aureus lineages. , 2007, Journal of medical microbiology.

[57]  N. Saunders,et al.  Multilocus sequence typing (MLST) of Staphylococcus aureus. , 2007, Methods in molecular biology.

[58]  R. P. Cordeiro,et al.  Emergence in Brazil of methicillin-resistant Staphylococcus aureus isolates carrying SCCmecIV that are related genetically to the USA800 clone. , 2007, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[59]  A. Cole,et al.  Suppression of innate immunity by a nasal carriage strain of Staphylococcus aureus increases its colonization on nasal epithelium , 2007, Immunology.

[60]  A. van Belkum,et al.  The role of human innate immune factors in nasal colonization by Staphylococcus aureus. , 2007, Microbes and infection.

[61]  Kristin P. Bennett,et al.  Typing Staphylococcus aureus Using the spa Gene and Novel Distance Measures , 2007, IEEE ACM Trans. Comput. Biol. Bioinform..

[62]  Wilbert Bitter,et al.  Type VII secretion — mycobacteria show the way , 2007, Nature Reviews Microbiology.

[63]  C. Lämmler,et al.  Distribution of enterotoxin genes among carriage‐ and infection‐associated isolates of Staphylococcus aureus , 2007, Letters in applied microbiology.

[64]  A. van Belkum,et al.  Host-microbe interplay in persistent Staphylococcus aureus nasal carriage in HIV patients. , 2008, Microbes and infection.

[65]  D. Missiakas,et al.  EsaC substrate for the ESAT‐6 secretion pathway and its role in persistent infections of Staphylococcus aureus , 2008, Molecular microbiology.

[66]  Timothy Foster,et al.  Key Role for Clumping Factor B in Staphylococcus aureus Nasal Colonization of Humans , 2008, PLoS medicine.

[67]  O. Schneewind,et al.  Genome Sequence of Staphylococcus aureus Strain Newman and Comparative Analysis of Staphylococcal Genomes: Polymorphism and Evolution of Two Major Pathogenicity Islands , 2007, Journal of bacteriology.

[68]  C. Weidenmaier,et al.  Differential roles of sortase-anchored surface proteins and wall teichoic acid in Staphylococcus aureus nasal colonization. , 2008, International journal of medical microbiology : IJMM.

[69]  E. Bouza,et al.  Nasal carriage of S. aureus increases the risk of surgical site infection after major heart surgery. , 2008, The Journal of hospital infection.

[70]  A. Cole,et al.  Subversion of interleukin‐1‐mediated host defence by a nasal carrier strain of Staphylococcus aureus , 2009, Immunology.