Cycles of quadratic polynomials and rational points on a genus-$2$ curve
暂无分享,去创建一个
[1] E. V. Flynn,et al. A flexible method for applying Chabauty's Theorem , 1997, Compositio Mathematica.
[2] Serge Lang,et al. Abelian varieties , 1983 .
[3] Curves of genus 2 with good reduction away from 2 with a rational Weierstrass point , 1993 .
[4] Thierry Bousch. Sur quelques problèmes de dynamique holomorphe , 1992 .
[5] N. Katz,et al. Galois properties of torsion points on abelian varieties , 1980 .
[6] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[7] E. V. Flynn. Descent via isogeny in dimension 2 , 1994 .
[8] J. Milne. Elliptic Curves , 2020 .
[9] R. Walde,et al. Rational Periodic Points of the Quadratic Function Qc(x) = x2 + c , 1994 .
[10] Joseph H. Silverman,et al. Periodic points, multiplicities, and dynamical units. , 1995 .
[11] C. Woodcock. LOCAL FIELDS (London Mathematical Society Student Texts 3) , 1987 .
[12] Joseph H. Silverman,et al. Rational periodic points of rational functions , 1994 .
[13] Edward F. Schaefer. 2-Descent on the Jacobians of Hyperelliptic Curves , 1995 .
[14] William G. McCallum. On the Shafarevich-Tate group of the jacobian of a quotient of the Fermat curve , 1988 .
[15] Gregory S. Call,et al. Canonical heights on varieties with morphisms , 1993 .
[16] E. V. Flynn. The group law on the jacobian of a curve of genus 2. , 1993 .
[17] Patrick Morton,et al. On certain algebraic curves related to polynomial maps , 1996 .
[18] The arithmetic of Fermat curves , 1992 .
[19] Patrick Morton,et al. Arithmetic properties of periodic points of quadratic maps, II , 1992 .
[20] H. Lange. Kurven mit rationaler Abbildung. , 1977 .
[21] D. G. Northcott,et al. Periodic Points on an Algebraic Variety , 1950 .
[22] S. Lang,et al. Abelian varieties over finite fields , 2005 .
[23] Computing the Mordell-Weil rank of Jacobians of curves of genus two , 1993 .
[24] E. V. Flynn. An explicit theory of heights , 1995 .
[25] B. Poonen. Torsion in rank 1 Drinfeld modules and the uniform boundedness conjecture , 1995, math/9507217.
[26] The Mordell-Weil Group of Curves of Genus 2 , 1983 .
[27] M. A Kenku. On the number of Q-isomorphism classes of elliptic curves in each Q-isogeny class , 1982 .
[28] Inegalite relative des genres , 1993 .
[29] E. V. Flynn. The Jacobian and formal group of a curve of genus 2 over an arbitrary ground field , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.
[30] Loïc Merel,et al. Bornes pour la torsion des courbes elliptiques sur les corps de nombres , 1996 .