Computer vision elastography: speckle adaptive motion estimation for elastography using ultrasound sequences

We present the development and validation of an image based speckle tracking methodology, for determining temporal two-dimensional (2-D) axial and lateral displacement and strain fields from ultrasound video streams. We refine a multiple scale region matching approach incorporating novel solutions to known speckle tracking problems. Key contributions include automatic similarity measure selection to adapt to varying speckle density, quantifying trajectory fields, and spatiotemporal elastograms. Results are validated using tissue mimicking phantoms and in vitro data, before applying them to in vivo musculoskeletal ultrasound sequences. The method presented has the potential to improve clinical knowledge of tendon pathology from carpel tunnel syndrome, inflammation from implants, sport injuries, and many others.

[1]  J. Bamber,et al.  Ultrasound elasticity imaging: definition and technology , 1999, European Radiology.

[2]  T. Varghese,et al.  Direct strain estimation in elastography using spectral cross-correlation. , 2000, Ultrasound in medicine & biology.

[3]  Xiaorong Gao,et al.  Multi-Scale Nonlinear Thresholding for Ultrasonic Speckle Suppression , 1999, IEEE Trans. Medical Imaging.

[4]  I Céspedes,et al.  Noise reduction in elastograms using temporal stretching with multicompression averaging. , 1996, Ultrasound in medicine & biology.

[5]  David J. Heeger,et al.  Optical flow using spatiotemporal filters , 2004, International Journal of Computer Vision.

[6]  X. Hao,et al.  A novel multiscale nonlinear thresholding method for ultrasonic speckle suppressing. , 1999, IEEE transactions on medical imaging.

[7]  Michel Bertrand,et al.  Ultrasonic texture motion analysis: theory and simulation , 1995, IEEE Trans. Medical Imaging.

[8]  G. Ateshian,et al.  An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression. , 2002, Journal of biomechanical engineering.

[9]  G. Mailloux,et al.  Computer Analysis of Heart Motion from Two-Dimensional Echocardiograms , 1987, IEEE Transactions on Biomedical Engineering.

[10]  B. Friemel,et al.  Experimental velocity profiles and volumetric flow via two-dimensional speckle tracking. , 1995, Ultrasound in medicine & biology.

[11]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[12]  Jim Graham,et al.  Estimating Motion in Noisy, Textured Images: Optical Flow in Medical Ultrasound , 1996, BMVC.

[13]  Luciano Alparone,et al.  Adaptively weighted vector-median filters for motion-fields smoothing , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[14]  M Mirmehdi,et al.  Musculoskeletal motion flow fields using hierarchical variable-sized block matching in ultrasonographic video sequences. , 2004, Journal of biomechanics.

[15]  Its'hak Dinstein,et al.  New maximum likelihood motion estimation schemes for noisy ultrasound images , 2002, Pattern Recognit..

[16]  Nigel L. Bush,et al.  Freehand Elasticity Imaging Using Speckle Decorrelation Rate , 1996 .

[17]  J Ophir,et al.  Estimating tissue strain from signal decorrelation using the correlation coefficient. , 1996, Ultrasound in medicine & biology.

[18]  S. Emelianov,et al.  Strain Imaging of Coronary Arteries with Intraluminal Ultrasound: Experiments on an Inhomogeneous Phantom , 1996 .

[19]  Ishwar K. Sethi,et al.  Finding Trajectories of Feature Points in a Monocular Image Sequence , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Takahiro Ishikawa,et al.  The template update problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  J. Ralphs,et al.  Fibrocartilage in tendons and ligaments — an adaptation to compressive load , 1998, Journal of anatomy.

[22]  K. R. Raghavan,et al.  Lateral displacement estimation using tissue incompressibility , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[23]  Michael Vogt,et al.  A HIGH FREQUENCY ULTRASOUND ELASTOGRAPHY SYSTEM FOR IN VIVO SKIN ELASTICITY IMAGING , 2003 .

[24]  K J Parker,et al.  Multilevel and motion model-based ultrasonic speckle tracking algorithms. , 1998, Ultrasound in medicine & biology.

[25]  T. Varghese,et al.  Multiresolution imaging in elastography , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[26]  R. F. Wagner,et al.  Statistics of Speckle in Ultrasound B-Scans , 1983, IEEE Transactions on Sonics and Ultrasonics.

[27]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[28]  Majid Mirmehdi,et al.  Variable sized block matching for in vivo musculoskeletal motion analysis , 2003 .

[29]  J. Ophir,et al.  A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson's ratios in tissues. , 1998, Ultrasound in medicine & biology.

[30]  Andrew H. Gee,et al.  Correction of Probe Pressure Artifacts in Freehand 3D Ultrasound , 2001, MICCAI.

[31]  Michael Brady,et al.  Velocity Estimation in Ultrasound Images: A Block Matching Approach , 2003, IPMI.

[32]  J. Ophir,et al.  Elastography: A Quantitative Method for Imaging the Elasticity of Biological Tissues , 1991, Ultrasonic imaging.