Unifying Reactive Collision Avoidance and Control Allocation for Multi-Vehicle Systems

To enable autonomous vehicles to operate in cluttered and unpredictable environments with numerous obstacles, such vehicles need a collision avoidance system that can react to and handle sudden changes in the environment. In this paper, we propose an optimization-based reactive collision avoidance system that uses control barrier functions integrated into the control allocation. We demonstrate the effectiveness of our method through numerical simulations with autonomous surface vehicles. The simulated vehicles track their reference waypoints while maintaining safe distances. The proposed method can be readily implemented on vehicles that already use an optimization-based control allocation method.