Micron-gap spacers with ultrahigh thermal resistance and mechanical robustness for direct energy conversion

[1]  E. Meyhofer,et al.  Nanogap near-field thermophotovoltaics , 2018, Nature Nanotechnology.

[2]  Lee A. Weinstein,et al.  A Hybrid Electric and Thermal Solar Receiver , 2018 .

[3]  Bong Jae Lee,et al.  Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap , 2018 .

[4]  M. Goto,et al.  Ultra-low thermal conductivity of high-interface density Si/Ge amorphous multilayers , 2018 .

[5]  Alireza Nojeh,et al.  Thermionic Energy Conversion in the Twenty-first Century: Advances and Opportunities for Space and Terrestrial Applications , 2017, Front. Mech. Eng..

[6]  Michal Lipson,et al.  High-performance near-field thermophotovoltaics for waste heat recovery , 2017 .

[7]  T. Ono,et al.  Impact of thermal contact resistances on micro-gap heat losses for microthermionic power generators , 2016 .

[8]  I. Tittonen,et al.  Thermal conductivity of amorphous Al2O3/TiO2 nanolaminates deposited by atomic layer deposition , 2016, Nanotechnology.

[9]  H. Krebs,et al.  Minimized thermal conductivity in highly stable thermal barrier W/ZrO2 multilayers , 2016 .

[10]  R. Ross,et al.  Quantifying MLI Thermal Conduction in Cryogenic Applications from Experimental Data , 2015 .

[11]  E. Lu,et al.  Ultralight shape-recovering plate mechanical metamaterials , 2015, Nature Communications.

[12]  A. Kribus,et al.  Negative space charge effects in photon-enhanced thermionic emission solar converters , 2015 .

[13]  H. Toshiyoshi,et al.  Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer , 2015 .

[14]  T. Ono,et al.  Thermal investigation of a micro-gap thermionic power generator , 2014 .

[15]  Caroline S. Gorham,et al.  Density dependence of the room temperature thermal conductivity of atomic layer deposition-grown amorphous alumina (Al2O3) , 2014 .

[16]  R. Howe,et al.  Microfabricated Thermally Isolated Low Work-Function Emitter , 2014, Journal of Microelectromechanical Systems.

[17]  J. Battaglia,et al.  High Temperature Thermal Conductivity of Amorphous Al2O3 Thin Films Grown by Low Temperature ALD , 2013 .

[18]  Hongyuan Yuan,et al.  Microbead-separated thermionic energy converter with enhanced emission current. , 2013, Physical chemistry chemical physics : PCCP.

[19]  Nicholas R. Jankowski,et al.  Interfacial Resistance Measurement of High Performance Thermal Interface Materials , 2013 .

[20]  R. Howe,et al.  ENCAPSULATED THERMIONIC ENERGY CONVERTER WITH STIFFENED SUSPENSION , 2012 .

[21]  Patrick Achard,et al.  Aerogel-based thermal superinsulation: an overview , 2012, Journal of Sol-Gel Science and Technology.

[22]  Jae Hyung Lee,et al.  Optimal emitter-collector gap for thermionic energy converters , 2012 .

[23]  Piero Pianetta,et al.  Photon-enhanced thermionic emission for solar concentrator systems. , 2010, Nature materials.

[24]  J. Rodríguez-Viejo,et al.  Ultra-Low Thermal Conductivity in Nanoscale Layered Oxides , 2010 .

[25]  A. Robinson,et al.  A high-precision apparatus for the characterization of thermal interface materials. , 2009, The Review of scientific instruments.

[26]  R.N. Jarrett,et al.  Comparison of Test Methods for High Performance Thermal Interface Materials , 2007, Twenty-Third Annual IEEE Semiconductor Thermal Measurement and Management Symposium.

[27]  H. Reiss A coupled numerical analysis of shield temperatures, heat losses and residual gas pressures in an evacuated super-insulation using thermal and fluid networks: Part I: Stationary conditions , 2006 .

[28]  K. Goodson,et al.  3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon , 2006 .

[29]  P. Greiff,et al.  Micron-gap ThermoPhotoVoltaics (MTPV) , 2004 .

[30]  Kevin R. Zavadil,et al.  Low work function material development for the microminiature thermionic converter. , 2004 .

[31]  D. Cahill,et al.  Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates , 2004, Science.

[32]  Gang Chen,et al.  Surface modes for near field thermophotovoltaics , 2003 .

[33]  G. O. Fitzpatrick,et al.  Close-spaced thermionic converters with active spacing control and heat-pipe isothermal emitters , 1996, IECEC 96. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference.

[34]  G. Scherer,et al.  Compression of aerogels , 1995 .

[35]  Lawrence W. Hrubesh,et al.  Thermal properties of organic and inorganic aerogels , 1994 .

[36]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.

[37]  T. Woignier,et al.  Mechanical strength of silica aerogels , 1988 .

[38]  K. Kutzner,et al.  Radiative and conductive heat transmission through superinsulations — experimental results for aluminium coated plastic foils , 1973 .

[39]  M. Cooper,et al.  Thermal contact conductance , 1969 .

[40]  George N. Hatsopoulos,et al.  Thermionic energy conversion , 1966 .

[41]  J. E. Beggs VACUUM THERMIONIC ENERGY CONVERTER , 1963 .

[42]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[43]  F. L. Jones Electric Contacts , 1947, Nature.

[44]  W. Johnson,et al.  Cylindrical cryogenic calorimeter testing of six types of multilayer insulation systems , 2018 .

[45]  A. Majumdar,et al.  Transient Thermo-Reflectance Method for Characterization of Thermal Interface Material Based on Carbon Nanotube Array , 2009 .

[46]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[47]  Kelly E. Parmenter,et al.  Mechanical properties of silica aerogels , 1998 .

[48]  R. Holm Electric contacts; theory and application , 1967 .

[49]  F. P. Bowden,et al.  The Friction and Lubrication of Solids , 1964 .

[50]  F. Llewellyn-Jones,et al.  The physics of electrical contacts , 1957 .