Micron-gap spacers with ultrahigh thermal resistance and mechanical robustness for direct energy conversion
暂无分享,去创建一个
Samuel M. Nicaise | R. Howe | N. Melosh | Mohsen Azadi | J. Schwede | I. Bargatin | W. Cha | D. Lilley | Tara Bozorg-Grayeli | Chen Lin | Promise Adebayo-Ige | Yann Pfitzer | Kyana C. Van Houten
[1] E. Meyhofer,et al. Nanogap near-field thermophotovoltaics , 2018, Nature Nanotechnology.
[2] Lee A. Weinstein,et al. A Hybrid Electric and Thermal Solar Receiver , 2018 .
[3] Bong Jae Lee,et al. Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap , 2018 .
[4] M. Goto,et al. Ultra-low thermal conductivity of high-interface density Si/Ge amorphous multilayers , 2018 .
[5] Alireza Nojeh,et al. Thermionic Energy Conversion in the Twenty-first Century: Advances and Opportunities for Space and Terrestrial Applications , 2017, Front. Mech. Eng..
[6] Michal Lipson,et al. High-performance near-field thermophotovoltaics for waste heat recovery , 2017 .
[7] T. Ono,et al. Impact of thermal contact resistances on micro-gap heat losses for microthermionic power generators , 2016 .
[8] I. Tittonen,et al. Thermal conductivity of amorphous Al2O3/TiO2 nanolaminates deposited by atomic layer deposition , 2016, Nanotechnology.
[9] H. Krebs,et al. Minimized thermal conductivity in highly stable thermal barrier W/ZrO2 multilayers , 2016 .
[10] R. Ross,et al. Quantifying MLI Thermal Conduction in Cryogenic Applications from Experimental Data , 2015 .
[11] E. Lu,et al. Ultralight shape-recovering plate mechanical metamaterials , 2015, Nature Communications.
[12] A. Kribus,et al. Negative space charge effects in photon-enhanced thermionic emission solar converters , 2015 .
[13] H. Toshiyoshi,et al. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer , 2015 .
[14] T. Ono,et al. Thermal investigation of a micro-gap thermionic power generator , 2014 .
[15] Caroline S. Gorham,et al. Density dependence of the room temperature thermal conductivity of atomic layer deposition-grown amorphous alumina (Al2O3) , 2014 .
[16] R. Howe,et al. Microfabricated Thermally Isolated Low Work-Function Emitter , 2014, Journal of Microelectromechanical Systems.
[17] J. Battaglia,et al. High Temperature Thermal Conductivity of Amorphous Al2O3 Thin Films Grown by Low Temperature ALD , 2013 .
[18] Hongyuan Yuan,et al. Microbead-separated thermionic energy converter with enhanced emission current. , 2013, Physical chemistry chemical physics : PCCP.
[19] Nicholas R. Jankowski,et al. Interfacial Resistance Measurement of High Performance Thermal Interface Materials , 2013 .
[20] R. Howe,et al. ENCAPSULATED THERMIONIC ENERGY CONVERTER WITH STIFFENED SUSPENSION , 2012 .
[21] Patrick Achard,et al. Aerogel-based thermal superinsulation: an overview , 2012, Journal of Sol-Gel Science and Technology.
[22] Jae Hyung Lee,et al. Optimal emitter-collector gap for thermionic energy converters , 2012 .
[23] Piero Pianetta,et al. Photon-enhanced thermionic emission for solar concentrator systems. , 2010, Nature materials.
[24] J. Rodríguez-Viejo,et al. Ultra-Low Thermal Conductivity in Nanoscale Layered Oxides , 2010 .
[25] A. Robinson,et al. A high-precision apparatus for the characterization of thermal interface materials. , 2009, The Review of scientific instruments.
[26] R.N. Jarrett,et al. Comparison of Test Methods for High Performance Thermal Interface Materials , 2007, Twenty-Third Annual IEEE Semiconductor Thermal Measurement and Management Symposium.
[27] H. Reiss. A coupled numerical analysis of shield temperatures, heat losses and residual gas pressures in an evacuated super-insulation using thermal and fluid networks: Part I: Stationary conditions , 2006 .
[28] K. Goodson,et al. 3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon , 2006 .
[29] P. Greiff,et al. Micron-gap ThermoPhotoVoltaics (MTPV) , 2004 .
[30] Kevin R. Zavadil,et al. Low work function material development for the microminiature thermionic converter. , 2004 .
[31] D. Cahill,et al. Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates , 2004, Science.
[32] Gang Chen,et al. Surface modes for near field thermophotovoltaics , 2003 .
[33] G. O. Fitzpatrick,et al. Close-spaced thermionic converters with active spacing control and heat-pipe isothermal emitters , 1996, IECEC 96. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference.
[34] G. Scherer,et al. Compression of aerogels , 1995 .
[35] Lawrence W. Hrubesh,et al. Thermal properties of organic and inorganic aerogels , 1994 .
[36] Watson,et al. Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.
[37] T. Woignier,et al. Mechanical strength of silica aerogels , 1988 .
[38] K. Kutzner,et al. Radiative and conductive heat transmission through superinsulations — experimental results for aluminium coated plastic foils , 1973 .
[39] M. Cooper,et al. Thermal contact conductance , 1969 .
[40] George N. Hatsopoulos,et al. Thermionic energy conversion , 1966 .
[41] J. E. Beggs. VACUUM THERMIONIC ENERGY CONVERTER , 1963 .
[42] J. C. Jaeger,et al. Conduction of Heat in Solids , 1952 .
[43] F. L. Jones. Electric Contacts , 1947, Nature.
[44] W. Johnson,et al. Cylindrical cryogenic calorimeter testing of six types of multilayer insulation systems , 2018 .
[45] A. Majumdar,et al. Transient Thermo-Reflectance Method for Characterization of Thermal Interface Material Based on Carbon Nanotube Array , 2009 .
[46] P. Mahadevan,et al. An overview , 2007, Journal of Biosciences.
[47] Kelly E. Parmenter,et al. Mechanical properties of silica aerogels , 1998 .
[48] R. Holm. Electric contacts; theory and application , 1967 .
[49] F. P. Bowden,et al. The Friction and Lubrication of Solids , 1964 .
[50] F. Llewellyn-Jones,et al. The physics of electrical contacts , 1957 .