Resistive-type hydrogen gas sensor based on TiO2: A review

Abstract Owing to its high energy density and environmentally friendly nature, hydrogen has already been regarded as the ultimate energy of the 21st century and gained significant attention from the worldwide researchers. Meanwhile, there are increasing concerns about its safe use, storage and transport as, despite being colorless and odorless, after certain concentration level it becomes flammable and explosive in air. Therefore, it is imperative to develop H2 sensors for real-time monitoring of the H2 leakage for an early warning. This paper firstly introduces the general hydrogen gas sensing mechanism of TiO2-based hydrogen sensors. Then we summarize and comment on the current hydrogen gas sensor based on various TiO2 materials, which include pristine TiO2, metal-assisted TiO2, organic-TiO2 composites, carbon-TiO2 composites, MOX-TiO2 composites and novel sensor concept with effective top-bottom electrode configuration. Finally, we briefly discuss the obstacles that TiO2-based H2 sensors have to overcome in the progress of the systematically practical application, possible solutions, and future research perspectives that can be focused in this area.

[1]  David E. Williams Semiconducting oxides as gas-sensitive resistors , 1999 .

[2]  N. Bârsan,et al.  Metal oxide-based gas sensor research: How to? , 2007 .

[3]  J. Yi,et al.  Remarkably enhanced hydrogen sensing of highly-ordered SnO2-decorated TiO2 nanotubes , 2018, Sensors and Actuators B: Chemical.

[4]  Qiyuan He,et al.  Graphene-based electronic sensors , 2012 .

[5]  Zafer Ziya Öztürk,et al.  Synthesis of highly-ordered TiO2 nanotubes for a hydrogen sensor , 2010 .

[6]  R. Asahi,et al.  Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. , 2014, Chemical reviews.

[7]  Shahruz Nasirian,et al.  Polyaniline assisted by TiO2:SnO2 nanoparticles as a hydrogen gas sensor at environmental conditions , 2015 .

[8]  Huaqing Xie,et al.  Thermodynamic study for hydrogen production from bio-oil via sorption-enhanced steam reforming: Comparison with conventional steam reforming , 2017 .

[9]  O. Wolfbeis Fiber-optic chemical sensors and biosensors. , 2000, Analytical chemistry.

[10]  S. K. Hazra,et al.  High sensitivity and fast response hydrogen sensors based on electrochemically etched porous titania thin films , 2006 .

[11]  D. M. Leeuw,et al.  NO2 Detection and Real-Time Sensing with Field-Effect Transistors , 2014 .

[12]  C. Sanchez,et al.  DESIGN OF HYBRID ORGANIC-INORGANIC MATERIALS SYNTHESIZED VIA SOL-GEL CHEMISTRY , 1994 .

[13]  Michael A. Henderson,et al.  The Interaction of Water with Solid Surfaces: Fundamental Aspects Revisited , 2002 .

[14]  O. Wolfbeis,et al.  Fiber-optic chemical sensors and biosensors (2008-2012). , 2013, Analytical chemistry.

[15]  G. Shao,et al.  Fundamental Pathways for the Adsorption and Transport of Hydrogen on TiO2 Surfaces: Origin for Effective Sensing at about Room Temperature. , 2016, ACS applied materials & interfaces.

[16]  Zhenhong Jia,et al.  Er-enhanced humidity sensing performance in black ZnO-based sensor , 2018 .

[17]  A. A. Haidry,et al.  Effect of Post-Deposition Annealing Treatment on the Structural, Optical and Gas Sensing Properties of TiO2 Thin Films , 2012 .

[18]  T. Roch,et al.  Strong biaxial texture and polymorph nature in TiO2 thin film formed by ex-situ annealing on c-plane Al2O3 surface , 2012 .

[19]  C. Sarkar,et al.  Studies on a resistive gas sensor based on sol–gel grown nanocrystalline p-TiO2 thin film for fast hydrogen detection , 2013 .

[20]  Xiaogan Li,et al.  Highly sensitive and selective room-temperature formaldehyde sensors using hollow TiO2 microspheres , 2015 .

[21]  Shahruz Nasirian,et al.  Hydrogen gas sensing based on polyaniline/anatase titania nanocomposite , 2014 .

[22]  Stephen D. Evans,et al.  Vapour sensing using hybrid organic-inorganic nanostructured materials , 2000 .

[23]  Zhaohui Li,et al.  Ni-doped TiO2 nanotubes for wide-range hydrogen sensing , 2014, Nanoscale Research Letters.

[24]  X. Duan,et al.  Graphene: An Emerging Electronic Material , 2012, Advanced materials.

[25]  Xiaohui Wang,et al.  A novel hydrogen-sensitive sensor based on Pd nanorings/TNTs composite structure , 2017 .

[26]  M. Rȩkas,et al.  Defect chemistry and semiconducting properties of titanium dioxide: I. Intrinsic electronic equilibrium , 2003 .

[27]  P. Fragiacomo,et al.  Theoretical and experimental investigation of syngas-fueled molten carbonate fuel cell for assessment of its performance , 2017 .

[28]  Yuwen Bao,et al.  A hydrogen sensor based on orientation aligned TiO2 thin films with low concentration detecting limit and short response time , 2016 .

[29]  W. Wlodarski,et al.  Electropolymerized Polypyrrole Nanowires for Hydrogen Gas Sensing , 2012 .

[30]  Craig A. Grimes,et al.  Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes , 2006 .

[31]  Tao Wang,et al.  Low-cost fabrication of highly sensitive room temperature hydrogen sensor based on ordered mesoporous Co-doped TiO 2 structure , 2017 .

[32]  Lixian Sun,et al.  Pd-doped TiO2@polypyrrole core-shell composites as hydrogen-sensing materials , 2016 .

[33]  J. Herrmann,et al.  Evidence by Electrical Conductivity Measurements for Hydrogen Spill Over on Pt, Rh and Ni/TiO2 Catalysts. Consequences for Bifunctional Photocatalysis , 1983 .

[34]  K. Zakrzewska,et al.  Nanopowders of chromium doped TiO2 for gas sensors , 2012 .

[35]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[36]  Jae-Hun Kim,et al.  MOF-Based Membrane Encapsulated ZnO Nanowires for Enhanced Gas Sensor Selectivity. , 2016, ACS applied materials & interfaces.

[37]  C. Bittencourt,et al.  Aerosol-Assisted CVD-Grown PdO Nanoparticle-Decorated Tungsten Oxide Nanoneedles Extremely Sensitive and Selective to Hydrogen. , 2016, ACS applied materials & interfaces.

[38]  Shurong Wang,et al.  Organic/inorganic hybrid sensors: A review , 2013 .

[39]  A. Haidry,et al.  Sensing mechanism of low temperature NO2 sensing with top–bottom electrode (TBE) geometry , 2016 .

[40]  K. Vijayalakshmi,et al.  Influence of post-deposition annealing and the ITO underlayer on the properties of hybrid TiO2/ITO nanocomposite for enhanced hydrogen sensing at room temperature , 2018 .

[41]  Maolin Zhang,et al.  Improvement and mechanism for the fast response of a Pt/TiO2 gas sensor , 2010 .

[42]  The Stability, Electronic Structure, and Optical Property of TiO2 Polymorphs , 2013, 1312.2297.

[43]  Yasunori Taga,et al.  Electronic and optical properties of anatase TiO2 , 2000 .

[44]  H. Fu,et al.  Facile synthesis of novel 3D nanoflower-like Cu(x)O/multilayer graphene composites for room temperature NO(x) gas sensor application. , 2014, Nanoscale.

[45]  Weiqi Wang,et al.  Synergic effect within n-type inorganic–p-type organic nano-hybrids in gas sensors , 2013 .

[46]  Wenjun Liu,et al.  One-step photochemical deposition of PdAu alloyed nanoparticles on TiO2 nanowires for ultra-sensitive H2 detection , 2016 .

[47]  K. Shimanoe,et al.  Antimony-Doped Tin Dioxide Gas Sensors Exhibiting High Stability in the Sensitivity to Humidity Changes , 2016 .

[48]  Shahruz Nasirian,et al.  Effect of different titania phases on the hydrogen gas sensing features of polyaniline/TiO2 nanocomposite , 2014 .

[49]  Ling Ni,et al.  The highly efficient photocatalysts of Co/TiO2: Photogenerated charge-transfer properties and their applications in photocatalysis , 2014 .

[50]  Y. Shigesato,et al.  On the Crystal Structural Control of Sputtered TiO2 Thin Films , 2016, Nanoscale Research Letters.

[51]  N. Yamazoe New approaches for improving semiconductor gas sensors , 1991 .

[52]  S. Xiong,et al.  A Designed ZnO@ZIF-8 Core-Shell Nanorod Film as a Gas Sensor with Excellent Selectivity for H2 over CO. , 2017, Chemistry.

[53]  Marianna Kemell,et al.  Hydrogen sensor of Pd-decorated tubular TiO2 layer prepared by anodization with patterned electrodes on SiO2/Si substrate , 2016 .

[54]  B. Saruhan,et al.  Investigating the influence of Al-doping and background humidity on NO2 sensing characteristics of magnetron-sputtered SnO2 sensors , 2015 .

[55]  J. Nørskov,et al.  Oxygen vacancies as active sites for water dissociation on rutile TiO(2)(110). , 2001, Physical review letters.

[56]  R. Dell Hydrogen as an Energy Vector in the 21st Century , 1985 .

[57]  Douglas R. Kauffman,et al.  Understanding the sensor response of metal-decorated carbon nanotubes. , 2010, Nano letters.

[58]  Tao Wang,et al.  The effect of Co-doping on the humidity sensing properties of ordered mesoporous TiO 2 , 2017 .

[59]  Gang Xu,et al.  MOF Thin Film‐Coated Metal Oxide Nanowire Array: Significantly Improved Chemiresistor Sensor Performance , 2016, Advanced materials.

[60]  H. Kleebe,et al.  Gas sensing properties of TiO2 - SnO2 nanomaterials , 2013 .

[61]  Thomas A. Yersak,et al.  Predictive model for depressurization-induced blistering of type IV tank liners for hydrogen storage , 2017 .

[62]  Harald Giessen,et al.  Nanoantenna-enhanced gas sensing in a single tailored nanofocus , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[63]  K. Schierbaum,et al.  Interdependence of electroforming and hydrogen incorporation in nanoporous titanium dioxide , 2014, 1411.0388.

[64]  R. Nathawat,et al.  Room temperature hydrogen gas sensors of functionalized carbon nanotubes based hybrid nanostructure: Role of Pt sputtered nanoparticles , 2017 .

[65]  R. G. Pavelko,et al.  Hydrogen sensors on the basis of SnO2–TiO2 systems , 2012 .

[66]  Iole Venditti,et al.  Chemiresistive polyaniline-based gas sensors: A mini review , 2015 .

[67]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[68]  Wolfgang Göpel,et al.  SnO2 sensors: current status and future prospects☆ , 1995 .

[69]  L. Lauhon,et al.  Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. , 2013, Chemical Society Reviews.

[70]  J. Herrmann,et al.  Metal-support interactions: An in situ electrical conductivity study of Pt/TiO2 catalysts , 1982 .

[71]  T. Heinzel,et al.  Dynamics of hydrogen sensing with Pt/TiO2 Schottky diodes , 2013 .

[72]  Jing Bai,et al.  Titanium dioxide nanomaterials for sensor applications. , 2014, Chemical reviews.

[73]  A. Ayesh,et al.  Selective hydrogen gas sensor using CuFe2O4 nanoparticle based thin film , 2016 .

[74]  Increase in photovoltaic performances of dye-sensitized solar cells—Modification of interface between TiO2 nano-porous layers and F-doped SnO2 layers , 2008 .

[75]  Chandan Kumar Sarkar,et al.  Studies on p-TiO2/n-graphene heterojunction for hydrogen detection , 2015 .

[76]  I. Muto,et al.  Hydrogen Gas Sensor Using Pt- and Pd-Added Anodic TiO[sub 2] Nanotube Films , 2010 .

[77]  Xianghong Liu,et al.  Two‐Dimensional Nanostructured Materials for Gas Sensing , 2017 .

[78]  Mohammad Reza Gholami,et al.  The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing , 2012 .

[79]  L. Spiess,et al.  Sputtered TiO2 thin films with NiO additives for hydrogen detection , 2013 .

[80]  Giovanni Neri,et al.  Pt-TiO2/MWCNTs Hybrid Composites for Monitoring Low Hydrogen Concentrations in Air , 2012, Sensors.

[81]  Salvatore Iannotta,et al.  Multiselective visual gas sensor using nickel oxide nanowires as chemiresistor , 2018 .

[82]  Tao Wang,et al.  In situ synthesis of ordered mesoporous Co-doped TiO2 and its enhanced photocatalytic activity and selectivity for the reduction of CO2 , 2015 .

[83]  Chao Zhang,et al.  Hydrogen sensors based on noble metal doped metal-oxide semiconductor: A review , 2017 .

[84]  U. Diebold,et al.  The surface and materials science of tin oxide , 2005 .

[85]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .

[86]  Z. Öztürk,et al.  The effect of Pd on the H2 and VOC sensing properties of TiO2 nanorods , 2016 .

[87]  K. Sreenivas,et al.  Fast response H2S gas sensing characteristics with ultra-thin CuO islands on sputtered SnO2 , 2003 .

[88]  Shahruz Nasirian,et al.  Hydrogen gas sensing feature of polyaniline/titania (rutile) nanocomposite at environmental conditions , 2014 .

[89]  H. Gong,et al.  Synthesis of yellow mesoporous Ni-doped TiO2 with enhanced photoelectrochemical performance under visible light , 2017 .

[90]  Ralf Riedel,et al.  In situ and operando spectroscopy for assessing mechanisms of gas sensing. , 2007, Angewandte Chemie.

[91]  Wojtek Wlodarski,et al.  Physisorption-Based Charge Transfer in Two-Dimensional SnS2 for Selective and Reversible NO2 Gas Sensing. , 2015, ACS nano.

[92]  L. Ocola,et al.  Highly sensitive room temperature carbon monoxide detection using SnO2 nanoparticle-decorated semiconducting single-walled carbon nanotubes , 2013, Nanotechnology.

[93]  A. J. McQuillan,et al.  Apparent Semiconductor Type Reversal in Anatase TiO2 Nanocrystalline Films , 2007 .

[94]  Xun Chen,et al.  Comparative Study of Two Different TiO2 Film Sensors on Response to H2 under UV Light and Room Temperature , 2016, Sensors.

[95]  E. Llobet Gas sensors using carbon nanomaterials: A review , 2013 .

[96]  Yu Wang,et al.  Fast and highly-sensitive hydrogen sensing of Nb2O5 nanowires at room temperature , 2012 .

[97]  Karin Potje-Kamloth,et al.  Semiconductor junction gas sensors. , 2008, Chemical reviews.

[98]  P. Cui,et al.  Extraordinary room-temperature hydrogen sensing capabilities of porous bulk Pt–TiO2 nanocomposite ceramics , 2016 .

[99]  Jong Kyu Kim,et al.  Highly-sensitive H2 sensor operating at room temperature using Pt/TiO2 nanoscale Schottky contacts , 2017 .

[100]  Sunghoon Park,et al.  UV-enhanced NO2 gas sensing properties of SnO2-core/ZnO-shell nanowires at room temperature. , 2013, ACS applied materials & interfaces.

[101]  G. Neri,et al.  Hydrogen sensing characteristics of Pt/TiO2/MWCNTs composites , 2012 .

[102]  B. Dong,et al.  Facile synthesis of nitrogen doped ordered mesoporous TiO2 with improved humidity sensing properties , 2018 .

[103]  Chao Zhang,et al.  Pt-activated TiO2-MoS2 nanocomposites for H2 detection at low temperature , 2018 .

[104]  M. Schoenfisch,et al.  Electrochemical sensors. , 2008, Analytical chemistry.

[105]  L. Harris A Titanium Dioxide Hydrogen Detector , 1980 .

[106]  Tetsuya Kida,et al.  Determination of oxygen adsorption species on SnO2: Exact analysis of gas sensing properties using a sample gas pretreatment system , 2014 .

[107]  K. Zakrzewska,et al.  Sensitization of TiO2/SnO2 nanocomposites for gas detection , 2013 .

[108]  Honglie Shen,et al.  Cost-effective fabrication of polycrystalline TiO2 with tunable n/p response for selective hydrogen monitoring , 2018, Sensors and Actuators B: Chemical.

[109]  Tomas Roch,et al.  Flexible highly sensitive hydrogen gas sensor based on a TiO2 thin film on polyimide foil , 2017 .

[110]  Xianghong Liu,et al.  Nanostructured Materials for Room‐Temperature Gas Sensors , 2016, Advanced materials.

[111]  J. Nowotny,et al.  Defect chemistry and semiconducting properties of titanium dioxide: II. Defect diagrams☆ , 2003 .

[112]  D. S. Vlachos,et al.  Characterisation of the catalyst-semiconductor interaction mechanism in metal-oxide gas sensors , 1997 .

[113]  Bilge Saruhan,et al.  Effect of Pt/TiO2 interface on room temperature hydrogen sensing performance of memristor type Pt/TiO2/Pt structure , 2017 .

[114]  Marian Mikula,et al.  Fast highly-sensitive room-temperature semiconductor gas sensor based on the nanoscale Pt-TiO2-Pt sandwich , 2015 .

[115]  V. Lantto,et al.  Influence of electrode material on properties of SnO2-based gas sensor , 2003 .

[116]  Huibiao Liu,et al.  Construction of heterostructure materials toward functionality. , 2011, Chemical Society reviews.

[117]  Feng Yin,et al.  Crystal facet-dependent p-type and n-type sensing responses of TiO 2 nanocrystals , 2018, Sensors and Actuators B: Chemical.

[118]  C. Lamy,et al.  Electrochemical reforming of dimethoxymethane in a Proton Exchange Membrane Electrolysis Cell: A way to generate clean hydrogen for low temperature fuel cells , 2017 .

[119]  A. Gurlo,et al.  Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[120]  J. Rogers,et al.  Synthesis, assembly and applications of semiconductor nanomembranes , 2011, Nature.

[121]  Douglas R. Kauffman,et al.  Carbon nanotube gas and vapor sensors. , 2008, Angewandte Chemie.

[122]  K. Zakrzewska,et al.  Mixed oxides as gas sensors , 2001 .

[123]  W. Cao,et al.  A UV light enhanced TiO2/graphene device for oxygen sensing at room temperature , 2013 .